No CrossRef data available.
Published online by Cambridge University Press: 02 June 2017
Background: Current lumbar intervertebral disc prostheses provide suboptimal symptom relief with little natural load-cushioning. PVA-C is a promising biocompatible material, and our previous study finds that it can closely mimic the properties of nucleus pulposus. However, pure PVA-C does not possess adequate stiffness to mimic the annulus fibrosus. Methods: Composite particle-reinforced PVA-C formulations were tested to identify methods that could increase the elastic modulus. This included: sephadex, hydroxyapatite (stock) and hydroxyapatite (in-solution synthesis). All formulations were tested using 15% PVA-C and 5% reinforcing agent. Indentation and durometer tests were performed as well as simple compression, compressive stress relaxation and creep. Results: Indentation and durometer results did not clearly reveal any specific formulations that significantly improved stiffness. The addition of in-solution synthesized hydroxyapatite resulted in 1.15 to 2 time increase in elastic modulus (0.3-0.9 MPa) and associated decrease in stress relaxation and creep. The addition of stock hydroxyapatite and spehadex (G100f and G50sf) lowered the elastic modulus and increased stress relaxation and creep. Conclusions: In-solution synthesized hydroxyapatite is the only particle-reinforced composite PVA-C formulation that exhibited greater stiffness than pure PVA-C. The elastic modulus will need to be increased by 5-10x to adequately mimic the annulus fibrosus. A fiber-reinforced composite will likely be needed to accomplish this.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.