For a locally compact group   $G$  and
 $G$  and   $1\,<\,p\,<\,\infty $ , let
 $1\,<\,p\,<\,\infty $ , let   ${{A}_{p}}\left( G \right)$  be the Herz-Figà-Talamanca algebra and let
 ${{A}_{p}}\left( G \right)$  be the Herz-Figà-Talamanca algebra and let   $P{{M}_{p}}\left( G \right)$  be its dual Banach space. For a Banach
 $P{{M}_{p}}\left( G \right)$  be its dual Banach space. For a Banach   ${{A}_{p}}\left( G \right)$ -module
 ${{A}_{p}}\left( G \right)$ -module   $X$  of
 $X$  of   $P{{M}_{p}}\left( G \right)$ , we prove that the multiplier space
 $P{{M}_{p}}\left( G \right)$ , we prove that the multiplier space   $\text{M}\left( {{A}_{p}}\left( G \right),{{X}^{*}} \right)$  is the dual Banach space of
 $\text{M}\left( {{A}_{p}}\left( G \right),{{X}^{*}} \right)$  is the dual Banach space of   ${{Q}_{X}}$ , where
 ${{Q}_{X}}$ , where   ${{Q}_{X}}$  is the norm closure of the linear span
 ${{Q}_{X}}$  is the norm closure of the linear span   ${{A}_{p}}\left( G \right)X\,\text{of}\,u\,f\,\text{for}\,u\,\in \,{{A}_{p}}\left( G \right)\,\text{and}\,f\,\in \,X$  in the dual of
 ${{A}_{p}}\left( G \right)X\,\text{of}\,u\,f\,\text{for}\,u\,\in \,{{A}_{p}}\left( G \right)\,\text{and}\,f\,\in \,X$  in the dual of   $\text{M}\left( {{A}_{p}}\left( G \right),{{X}^{*}} \right)$ . If
 $\text{M}\left( {{A}_{p}}\left( G \right),{{X}^{*}} \right)$ . If   $p\,=\,2$  and
 $p\,=\,2$  and   $P{{F}_{p}}\left( G \right)\subseteq X$ , then
 $P{{F}_{p}}\left( G \right)\subseteq X$ , then   ${{A}_{p}}\left( G \right)X$  is closed in
 ${{A}_{p}}\left( G \right)X$  is closed in   $X$  if and only if
 $X$  if and only if   $G$  is amenable. In particular, we prove that the multiplier algebra
 $G$  is amenable. In particular, we prove that the multiplier algebra   $M{{A}_{p}}\left( G \right)\,\text{of}\,{{A}_{p}}\left( G \right)$  is the dual of
 $M{{A}_{p}}\left( G \right)\,\text{of}\,{{A}_{p}}\left( G \right)$  is the dual of   $Q$ , where
 $Q$ , where   $Q$  is the completion of
 $Q$  is the completion of   ${{L}^{1}}\left( G \right)$  in the
 ${{L}^{1}}\left( G \right)$  in the   $||\cdot |{{|}_{M}}$ -norm.
 $||\cdot |{{|}_{M}}$ -norm.   $Q$  is characterized by the following:
 $Q$  is characterized by the following:   $f\,\in \,Q$  if an only if there are
 $f\,\in \,Q$  if an only if there are   ${{u}_{i}}\,\in \,{{A}_{p}}\left( G \right)$  and
 ${{u}_{i}}\,\in \,{{A}_{p}}\left( G \right)$  and   ${{f}_{i}}\in P{{F}_{p}}\left( G \right)\left( i=1,2,... \right)$  with
 ${{f}_{i}}\in P{{F}_{p}}\left( G \right)\left( i=1,2,... \right)$  with   $\sum\nolimits_{i=1}^{\infty }{||}\,{{u}_{i}}\,|{{|}_{{{A}_{p}}\left( G \right)}}||fi|{{|}_{P{{F}_{p}}\left( G \right)}}\,<\,\infty $ such that
 $\sum\nolimits_{i=1}^{\infty }{||}\,{{u}_{i}}\,|{{|}_{{{A}_{p}}\left( G \right)}}||fi|{{|}_{P{{F}_{p}}\left( G \right)}}\,<\,\infty $ such that   $f=\sum{_{i=1}^{\infty }\,{{u}_{i}}{{f}_{i}}}$  on
 $f=\sum{_{i=1}^{\infty }\,{{u}_{i}}{{f}_{i}}}$  on   $M{{A}_{p}}\left( G \right)$ . It is also proved that if
 $M{{A}_{p}}\left( G \right)$ . It is also proved that if   ${{A}_{p}}\left( G \right)$  is dense in
 ${{A}_{p}}\left( G \right)$  is dense in   $M{{A}_{p}}\left( G \right)$  in the associated
 $M{{A}_{p}}\left( G \right)$  in the associated   ${{w}^{*}}$ -topology, then the multiplier norm and
 ${{w}^{*}}$ -topology, then the multiplier norm and   $||\cdot |{{|}_{{{A}_{p}}\left( G \right)}}$ -norm are equivalent on
 $||\cdot |{{|}_{{{A}_{p}}\left( G \right)}}$ -norm are equivalent on   ${{A}_{p}}\left( G \right))$  if and only if
 ${{A}_{p}}\left( G \right))$  if and only if   $G$  is amenable.
 $G$  is amenable.