Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:56:56.891Z Has data issue: false hasContentIssue false

The Structure of the Sequence Spaces of Maddox

Published online by Cambridge University Press:  20 November 2018

Karl-Goswin Grosse-Erdmann*
Affiliation:
Fachbereich Mathematik und Informatik Fern Universität Hagen—Gesamthochschule— Postfach 940 D-5800 Hagen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sequence of spaces of Maddox, c0(p), c(p)and l(p), are investigated. Here, p — (pk) is a bounded sequence of strictly positive numbers. It is observed that C0(P) is an echelon space of order 0 and that l(p) is a co-echelon space of order ∞, while clearly c(p) = c0(p) ⊗ 〈 (1,1,1,…) 〉. This sheds a new light on the topological and sequence space structure of these spaces: Based on the highly developed theory of (co-) echelon spaces all known and various new structural properties are derived.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

1. Bierstedt, K.D., Meise, R.G., and Summers, W.H., Köthe sets and Köthe sequence spaces, in Functional Analysis, Holomorphy and Approximation Theory, Amsterdam-New York-Oxford, North-Holland, 1982. 2791.Google Scholar
2. Boos, J., Der induktive Limes von abzählbarvielen FH-Räumen, Vereinigungsverfahren,ManuscriptaMath. 21(1977), 205225.Google Scholar
3. Goes, G., Summen von FK-Räumen, Funktionale Abschnittskonvergenzund Umkehrsätze, Tôhoku Math. J. 26(1974), 487504.Google Scholar
4. Jarchow, H., Locally convex spaces, Stuttgart, B.G. Teubner, 1981.Google Scholar
5. Köthe, G., Topological vector spaces, Vol. I, Berlin-Heidelberg-New York, Springer, 1969.Google Scholar
6. Lascarides, C.G., A study of certain sequence spaces ofMaddoxanda generalization of a theorem of Iyer, Pacific J. Math 38(1971), 487500.Google Scholar
7. Lascarides, C.G. and Maddox, I.J., Matrix transformations between some classes of sequences, Proc. Cambridge Philos. Soc. 68(1970), 99104.Google Scholar
8. Luh, Y., Die Räume l(p), looip), c(p), co(p), w(p), wo(p) und w∞ (p), Ein Ùberblick, Mitt. Math. Sem. Giessen 180(1987), 3557.Google Scholar
9. Maddox, I. J., Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2) 18(1967), 345355.Google Scholar
10. Maddox, I. J., Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64(1968), 335340.Google Scholar
11. Maddox, I. J., Continuous and Köthe -Toeplitz duals of certain sequence spaces, Proc. Cambridge Philos. Soc. 65(1969), 431435.Google Scholar
12. Maddox, I. J., Some properties of paranormed sequence spaces, J. London Math. Soc. 1(1969), 316322.Google Scholar
13. Maddox, I. J., An addendum on some properties of paranormed sequence spaces, J. London Math. Soc. 8(1974), 593594.Google Scholar
14. Maddox, I. J. and Lascarides, C.G., The weak completeness of certain sequence spaces, J. Nat. Acad. Math. India 1(1983), 8698.Google Scholar
15. Maddox, I. J. and Roles, J.W., Absolute convexity in certain topological linear spaces, Proc. Cambridge Philos. Soc. 66(1969), 541545.Google Scholar
16. Maddox, I. J. and Roles, J.W., Absolute convexity in spaces of strongly summable sequences, Canad. Math. Bull. 18(1975), 6775.Google Scholar
17. Nakano, H., Modulared sequence spaces, Proc. Japan Acad. 27(1951), 508512.Google Scholar
18. Rolewicz, S., On Cauchy-Hadamardformula for Köthe power spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10(1962), 211216.Google Scholar
19. Simons, S., The sequence spaces l﹛pv) and m(pv), Proc. London Math. Soc. 15(1965), 422436.Google Scholar
20. Valdivia, M., Topics in locally convex spaces, Amsterdam-New York-Oxford, North-Holland, 1982.Google Scholar
21. Wilansky, A., Modern methods in topological vector spaces, New York, McGraw-Hill, 1978.Google Scholar
22. Wilansky, A., Summability through functional analysis, Amsterdam-New York-Oxford, 1984.Google Scholar
23. Zeller, K., Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z. 53(1951), 463487.Google Scholar