Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T21:53:40.782Z Has data issue: false hasContentIssue false

A Stochastic Difference Equation with Stationary Noise on Groups

Published online by Cambridge University Press:  20 November 2018

Robinson Edward Raja Chandiraraj*
Affiliation:
Stat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560 059, INDIA email: creraja@isibang.ac.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the stochastic difference equation ${{\eta }_{k}}\,=\,{{\xi }_{k}}\phi \left( {{\eta }_{k-1}} \right),\,\,k\,\in \,\mathbb{Z}$ on a locally compact group $G$, where $\phi $ is an automorphism of $G$, ${{\xi }_{K}}$ are given $G$-valued random variables, and ${{\eta }_{k}}$ are unknown $G$-valued random variables. This equation was considered by Tsirelson and Yor on a one-dimensional torus. We consider the case when ${{\xi }_{K}}$ have a common law $\mu $ and prove that if $G$ is a distal group and $\phi $ is a distal automorphism of $G$ and if the equation has a solution, then extremal solutions of the equation are in one-to-one correspondence with points on the coset space $K\backslash G$ for some compact subgroup $K$ of $G$ such that $\mu $ is supported on $Kz\,=\,z\phi \left( K \right)$ for any $z$ in the support of $\mu $. We also provide a necessary and sufficient condition for the existence of solutions to the equation.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[Ab81] Abels, H., Distal automorphism groups of Lie groups. J. Reine Angew. Math. 329(1981), 8287. http://dx.doi.org/10.1515/crll.1981.329.82 Google Scholar
[Ak UY08] Akahori, J., Uenishi, C., and Yano, K., Stochastic equations on compact groups in discrete negative time. Probab. Theory Related Fields 140(2008), no. 3–4, 569593. http://dx.doi.org/10.1007/s00440-007-0076-z Google Scholar
[Co G74] Conze, J.-P. and Y. Guivarc’h, Remarques sur la distalité dans les espaces vectoriels. C. R. Acad. Sci. Paris Sér. A 278(1974), 10831086.Google Scholar
[Cs66] I.\Csiszár, , On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups. Z.Wahrscheinlichkeitstheorie und Verw. Gebiete 5(1966), 279295. http://dx.doi.org/10.1007/BF00535358 Google Scholar
[Did MS99] Dixon, J. D., du Sautoy, M. P. F., Mann, A., and Segal, D., Analytic pro-p groups. Second ed. Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, Cambridge, 1999.Google Scholar
[Ei92] Eisele, P., On shifted convolution powers of a probability measure.Math. Z. 211(1992), no. 4, 557574. http://dx.doi.org/10.1007/BF02571446 Google Scholar
[He77] Heyer, H., Probability measures on locally compact groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 94, Springer-Verlag, Berlin-New York, 1977.Google Scholar
[He R79] Hewitt, E. and Ross, K. A., Abstract harmonic analysis. Vol. I. Structure of topological groups, integration theory, group representations. Second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 115, Springer-Verlag, Berlin-New York, 1979.Google Scholar
[Hi Y10] Hirayama, T. and Yano, K., Extremal solutions for stochastic equations indexed by negative integers and taking values in compact groups. Stochastic Process. Appl. 120(2010), no. 8, 14041423. http://dx.doi.org/10.1016/j.spa.2010.04.003 Google Scholar
[Ho M98] Hofmann, H. and Morris, S. A., The structure of compact groups. A primer for the student—a handbook for the expert. de Gruyter Studies in Mathematics, 25, Walter de Gruyter & Co., Berlin, 1998.Google Scholar
[Ja RW96] Jaworski, W., Rosenblatt, J., and G.Willis, Concentration functions in locally compact groups. Math. Ann. 305(1996), no. 4, 673691. http://dx.doi.org/10.1007/BF01444244 Google Scholar
[Ja99] Jaworski, W., On shifted convolution powers and concentration functions in locally compact groups. In: Probability on algebraic structures (Gainesville, FL, 1999), Contemp. Math., 261, American Mathematical Society, Providence, RI, 2000, pp. 2341.Google Scholar
[Ja07] Jaworski, W., Dissipation of convolution powers in a metric group. J. Theoret. Probab. 20(2007), no. 3, 487503. http://dx.doi.org/10.1007/s10959-007-0072-3 Google Scholar
[Ja R07] Jaworksi, W. and Raja, C. R. E., The Choquet-Deny theorem and distal properties of totally disconnected locally compact groups of polynomial growth. New York J. Math. 13(2007), 159174.Google Scholar
[Ke73] Kesten, H., Random difference equations and renewal theory for products of random matrices. Acta Math. 131(1973), 207248. http://dx.doi.org/10.1007/BF02392040 Google Scholar
[Ra04] Raja, C. R. E., A note on unitary representation problem with corrigenda to the articles: “Weak mixing and unitary representation problem” [Bull. Sci. Math. 124(2000), no. 7, 517–523] and “Identity excluding groups” [ibid. 126(2002), no. 9, 763–772]. Bull. Sci. Math. 128(2004), no. 10, 803809. http://dx.doi.org/10.1016/j.bulsci.2004.04.002 Google Scholar
[Ra09] Raja, C. R. E., Distal actions and ergodic actions on compact groups. New York J. Math. 15(2009), 301318.Google Scholar
[Ra S10] Raja, C. R. E. and Shah, R., Distal actions and shifted convolution property. Israel J. Math. 177(2010), 391411. http://dx.doi.org/10.1007/s11856-010-0052-7 Google Scholar
[Ro86] Rosenblatt, J., A distal property of groups and the growth of connected locally compact groups. Mathematika 26(1979), no. 1, 9498. http://dx.doi.org/10.1112/S0025579300009669 Google Scholar
[Ta09] Takahashi, Y., Time evolution with and without remote past. In: Advances in discrete dynamical systems, Adv. Stud. Pure Math., 53, Math. Soc. Japan, Tokyo, 2009, pp. 347361.Google Scholar
[To65] Tortrat, A., Lois de probabilité sur un espace topologique complètement régulier et produits infinis à termes indépendants dans un groupe topologique. Ann. Inst. H. Poincaré Sect. B 1(1964/1965), 217237.Google Scholar
[Ts75] Tsirel’son, B. S., An example of a stochastic differential equation that has no strong solution. (Russian) Teor. Verojatnost. i Primenen. 20(1975), no. 2, 427430.Google Scholar
[Yo92] Yor, M., Tsirel’son's equation in discrete time. Probab. Theory Related Fields 91(1992), no. 23, 135152. http://dx.doi.org/10.1007/BF01291422 Google Scholar
[Za96] Zakusilo, O. K., Some properties of random vectors of the. (Russian. English summary) Teor. Verojatnost. i Mat. Statist. Vyp. 13(1975), 5962, 162Google Scholar