Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:01:04.602Z Has data issue: false hasContentIssue false

Sk2 and K3 Of Dihedral Groups

Published online by Cambridge University Press:  20 November 2018

Reinhard C. Laubenbacher
Affiliation:
Department of Mathematical Sciences New Mexico State University Las Cruces, New Mexico 88003 U.S.A.
Bruce A. Magurn
Affiliation:
Department of Mathematics and Statistics Miami University Oxford, Ohio 45056 U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New computations of birelative K2 groups and recent results on K3 of rings of algebraic integers are combined in generalized Mayer-Vietoris sequences for algebraic k-theory. Upper and lower bounds for SK2(ℤ G) and lower bounds for K3(ℤ G) are deduced for G a dihedral group of square-free order, and for some other closely related groups G.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

1. Aisbett, J.E., Lluis-Puebla, E. and Snaith, V., On K*(ℤ /n) and K*(Fq[t]/ (t2)), Memoirs Amer. Math. Soc. (57) 329 (1985), 200 pp.Google Scholar
2. Chaladus, S., Lower bounds of the order of K2 (ℤ G) for a cyclic p-group G, Bull. Acad. Pol. Sci., Ser. Sci. Math. 27 (1979), 665669.Google Scholar
3. Chaladus, S., Funktor K2 dla wybranychpierscieni, Part II, Prace Naukowe 5 (1982), 1725.Google Scholar
4. Dennis, R.K., Keating, M.E. and Stein, M.R., Lower bounds for the order of K 2 (ℤ G) and Wh2(G), Math. Ann. 223 (1976), 97103.Google Scholar
5. Dunwoody, M.J., k2(Z Π) for Π a group of order two or three, J.London Math. Soc. (2) 11 (1975), 481490.Google Scholar
6. Grayson, D.R., The K-theory of hereditary categories, J. Pure Appl. Algebra 11 (1977), 6774.Google Scholar
7. Guin-Waléry, D. and Loday, J.-L., Obstruction à l'excision en K-théorie algébrique, in Algebraic /ƒ-Theory, Lect. Notes Math, 854 Springer-Verlag, 1981. 179216.Google Scholar
8. Karoubi, M., Localisation déformes quadratiques I, Ann. Sci. Ec. Norm. Sup. (4) 7 (1974), 359404.Google Scholar
9. Keating, M.E., On the K-theory of tiled orders, J. Algebra 43 (1976), 193197.Google Scholar
10. Keune, F., Doubly relative K-theory and the relative K3 , J. Pure Appl. Algebra 20 (1981), 3953.Google Scholar
11. Kolster, M., K2 of rings of algebraic integers, preprint, 1990.Google Scholar
12. Kuku, A.O., Higher algebriac K-theory of group-rings and orders in algebras over number fields, Comm. Algebra (8) 10 (1982), 805816.Google Scholar
13. Laubenbacher, R.C., Generalized May er-Wietoris sequences in algebraic K-theory, J. Pure Appl. Algebra 51 (1988), 175192.Google Scholar
14. Laubenbacher, R.C., On the K-theory ofTG, G a group of square-free order, in Algebraic K-Theory : Connections with Geometry and Topology, Kluwer Academic Publ., 1989. 189208.Google Scholar
15. Levine, M., The indecomposable K3 of fields, Ann. Sci. Ec. Norm. Sup. (4) 22 (1989), 255344.Google Scholar
16. Magurn, B.,SK1 of dihedral groups, J. Algebra 51 (2) (1978), 399415.Google Scholar
1. Magurn, B., Whitehead groups of some hyperelementary groups, LondonMath, J.. Soc. (2)21 (1980), 176188.Google Scholar
18. Merkurjev, A.S., Suslin, A.A., On the K3 of a field, LOMI Preprints E-287. USSR Acad. Sci. Steklov Math. Inst., Leningrad Dept. (1987), 34 pp.Google Scholar
19. Milnor, J., Introduction to Algebraic K-Theory, Ann. Math. Stud. 72 Princeton U. Press , 1971. 184 pp.Google Scholar
20. Oliver, R., Lower bounds for , J. Algebra 94 (1985), 425487.Google Scholar
2. Oliver, R., K2 of p-adic group rings of abelianp-groups, Math. Z. 195 (1987), 505558.Google Scholar
22. Quillen, D., On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2)96 (1972),552586.Google Scholar
23. Reiner, I., Maximal Orders, Academic Press, 1975. 395 pp.Google Scholar
24. Serre, J.-P., Local Fields, (transi, byGreenberg, M.J.), Grad. Texts Math. 67 Springer-Verlag, 1979.241 pp.Google Scholar
25. Soulé, C., K-theorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251295.Google Scholar
26. Stein, M.R., Excision andK2 of group rings, J. Pure Appl. Algebra 18 (1980), 213224.Google Scholar
27. Swan, R.G., Induced representations and projective modules, Ann. of Math. (3) 71 (1960), 552578.Google Scholar
28. Wagoner, J.B., Algebraic invariantsforpseudo-isotopies,Proc. Liverpool Singularities Symp. II (1969/70), in Lect. Notes Math 209 Springer-Verlag, 1971. 164190.Google Scholar
29. Washington, L.C., Introduction to Cyclotomic Fields, Grad. Texts Math. 83 Springer-Verlag, 1982. 389 pp.Google Scholar
30. Weibel, C.A., K-theory and analytic isomorphisms, Invent. Math. 61 (1980), 177197.Google Scholar