Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:29:40.711Z Has data issue: false hasContentIssue false

Signed-Selmer Groups over the ℤ2p-extension of an Imaginary Quadratic Field

Published online by Cambridge University Press:  20 November 2018

Byoung Du (B. D.) Kim*
Affiliation:
Victoria University of Wellington. e-mail: bdkimster@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $E$ be an elliptic curve over $\mathbb{Q}$ that has good supersingular reduction at $p\,>\,3$. We construct what we call the $\pm /\pm $-Selmer groups of $E$ over the $\mathbb{Z}_{p}^{2}$-extension of an imaginary quadratic field $K$ when the prime $p$ splits completely over $K/\mathbb{Q}$, and prove that they enjoy a property analogous to Mazur's control theorem.

Furthermore, we propose a conjectural connection between the $\pm /\pm $-Selmer groups and Loeffler's two-variable $\pm /\pm $-$p$-adic $L$-functions of elliptic curves.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Haran, S., P-adic L-functions for modular forms. Compositio Math. 62(1987), no. 1, 3146.Google Scholar
[2] Iovita, A. and Pollack, R., Iwasawa theory of elliptic curves at supersingular primes over ℤp-extensions of number fields. J. Reine Angew. Math. 598(2006), 71103.Google Scholar
[3] Kim, B. D., The parity conjecture for elliptic curves at supersingular reduction primes. Compos. Math 143(2007), no. 1, 4772. http://dx.doi.org/10.1112/S0010437X06002569 CrossRefGoogle Scholar
[4] Kim, B. D., Two-variable p-adic L-functions of modular forms for non-ordinary primes. http://homepages.ecs.vuw.ac.nz/_bdkim/ Google Scholar
[5] Kobayashi, S.-I., Iwasawa theory for elliptic curves at supersingular primes. Invent. Math. 152(2003), no. 1, 136. http://dx.doi.org/10.1007/s00222-002-0265-4 CrossRefGoogle Scholar
[6] Kurihara, M., On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I. Invent. Math. 149(2002), no. 1, 195224. http://dx.doi.org/10.1007/s002220100206 CrossRefGoogle Scholar
[7] Lei, A., Iwasawa theory for modular forms at supersingular primes. Compos. Math. 147(2011), no. 3, 803838. http://dx.doi.org/10.1112/S0010437X10005130 CrossRefGoogle Scholar
[8] Lei, A., Loeffler, D., and Zerbes, S. L., Wach modules and Iwasawa theory for modular forms. Asian J. Math. 14(2010), no. 4, 475528. http://dx.doi.org/10.4310/AJM.2010.v14.n4.a2 CrossRefGoogle Scholar
[9] Lei, A., Coleman maps and p-adic regulator. Algebra Number Theory 5(2011), no. 8, 10951131. http://dx.doi.org/10.2140/ant.2011.5.1095 CrossRefGoogle Scholar
[10] Loeffler, D., P-adic integration on ray class groups and non-ordinary p-adic L-functions. To appear, Proceedings of the Conference Iwasawa, 2012. http://arxiv:1304.4042. Google Scholar
[11] Loeffler, D. and Zerbes, S., Iwasawa theory and p-adic L-functions for ℤ2 p-extensions. http://arxiv:1108.5954. Google Scholar
[12] Mazur, B., Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18(1972), 183266. http://dx.doi.org/10.1007/BF01389815 CrossRefGoogle Scholar
[13] Perrin-Riou, B., Théorie d’Iwasawa p-adique locale et globale. Invent. Math. 99(1990), no. 2, 247292. http://dx.doi.org/10.1007/BF01234420 CrossRefGoogle Scholar
[14] Pollack, R., On the p-adic L-function of a modular form at a supersingular prime. Duke Math. J. 118(2003), no. 3, 523558. http://dx.doi.org/10.1215/S0012-7094-03-11835-9 CrossRefGoogle Scholar
[15] Rubin, K., Local units, elliptic units, Heegner points and elliptic curves. Invent. Math. 88(1987), no. 2, 405422. http://dx.doi.org/10.1007/BF01388915 CrossRefGoogle Scholar
[16] Sprung, F., Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures. J. Number Theory 132(2012), no. 7, 14831506. http://dx.doi.org/10.1016/j.jnt.2011.11.003 CrossRefGoogle Scholar