Published online by Cambridge University Press: 20 November 2018
Our study in this paper is two-fold: One is that of a semigroup of linear operators on the space C(S) of bounded continuous functions on a locally compact Hausdorff space S, while the other is that of a transition function of measures in the Banach space M(S) of bounded regular Borel measures on S. It will be seen that an informative and essentially non-restrictive theory of the former can be obtained when C(S) is given the strict topology rather than the usual supremum norm topology and that, in this setting, the natural relationship between semigroups and transition functions obtained when S is compact is maintained, essentially because the dual of C(S) with the strict topology is M(S).