Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T19:52:48.337Z Has data issue: false hasContentIssue false

Schwartz Functions on Real Algebraic Varieties

Published online by Cambridge University Press:  20 November 2018

Boaz Elazar
Affiliation:
Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel, e-mail: boaz.elazar@weizmann.ac.il , ary.shaviv@weizmann.ac.il
Ary Shaviv
Affiliation:
Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel, e-mail: boaz.elazar@weizmann.ac.il , ary.shaviv@weizmann.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define Schwartz functions, tempered functions, and tempered distributions on (possibly singular) real algebraic varieties. We prove that all classical properties of these spaces, defined previously on affine spaces and on Nash manifolds, also hold in the case of affine real algebraic varieties, and give partial results for the non-affine case.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[AG] Aizenbud, A. and Gourevitch, D., Schwartz functions on Nash manifolds. Int. Math. Res. Not. IMRN (2008), no. 5, Art. ID rnm 155, 37. http://dx.doi.org/10.1093/imrn/rnm155Google Scholar
[BCR] Bochnak, J., Coste, M., and Roy, M.-E., Real algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, 36, Springer-Verlag, Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03718-8Google Scholar
[BM1] Bierstone, E. and Milman, P. D., Semi-analytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. 67 (1988), 542.Google Scholar
[BM2] Bierstone, E. and Milman, P. D., Geometric and differential properties of subanalytic sets. Ann. of Math. 147 (1998), 731785. http://dx.doi.Org/10.2307/120964Google Scholar
[BMP1] Bierstone, E., Milman, P. D., and Pawlucki, W., Composite differential functions. Duke Math. J. 83 (1996), 607620. http://dx.doi.org/10.1215/S0012-7094-96-08318-0Google Scholar
[BMP2] Bierstone, E., Milman, P. D., and Pawlucki, W., Higher-order tangents and Fefferman's paper on Whitney's extension problem. Ann. of Math. 164 (2006), 361370. http://dx.doi.org/10.4007/annals.2006.164.361Google Scholar
[CS] Constantine, G. M. and Savits, T. H., A multivariante Faa di Bruno formula with applications. Trans. Amer. Math. Soc. 384 (1996), 503520. http://dx.doi.org/10.1090/S0002-9947-96-01501-2Google Scholar
[dC] du Cloux, F., Sur les représentations differentiates des groupes de Lie alégbriques. Ann. Sci. École Norm. Sup. 24 (1991), 257318. http://dx.doi.Org/10.24033/asens.1628Google Scholar
[F] Fefferman, C., Whitney's extension problem for S“1. Ann. of Math. 164 (2006), 313359. http://dx.doi.org/10.4007/annals.2006.164.313Google Scholar
[J] Jech, T., Set theory. The third millennium éd., Springer-Verlag, Berlin, 2003.Google Scholar
[L] Lojasiewicz, S., On semi-analytic and subanalytic geometry. Banach Center Publ. 34 (1995), 89104.Google Scholar
[M] Merrien, J., Faisceaux analytiques semi-cohérents. Ann. Inst. Fourier (Grenoble) 30 (1980), 165219. http://dx.doi.Org/10.5802/aif.813Google Scholar
[P] Pawlucki, W., Examples of functions Ck-extendable for each k finite, but not Cx-extendable. Banach Center Publ., 44, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 183-187.Google Scholar
[S] Shiota, M., Geometry of subanalytic and semialgebraic sets. Progress in Mathematics, 150, Birkhâuser Boston, Inc., Boston, MA, 1997. http://dx.doi.Org/10.1007/978-1-4612-2008-4Google Scholar
[T] Trêves, F., Topological vector spaces, distributions and kernels. Academic Press, New York-London, 1967.Google Scholar