Published online by Cambridge University Press: 20 November 2018
In a mixed problem one is required to find a solution of a system of partial differential equations when the values of certain combinations of the derivatives are given on two or more distinct intersecting surfaces. If the differential equations arise from some physical process, the correct boundary conditions are usually apparent. Many particular problems of this type have been solved by special methods such as separation of variables and the method of images. However, no general criterion has been given for what constitutes a correctly set mixed problem. In fact such problems have usually been formulated in connection with hyperbolic differential equations with data prescribed on two surfaces (called the initial and boundary surfaces).