Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T01:06:30.692Z Has data issue: false hasContentIssue false

Partie imaginaire des résonances de Rayleigh dans le cas d'une boule

Published online by Cambridge University Press:  20 November 2018

Didier Gamblin*
Affiliation:
LAGA, Institut Galilée, Université Paris 13, 99 av. J-B Clément, 93430 Villetaneuse, France e-mail: gamblin@math.univ-paris13.fr
Rights & Permissions [Opens in a new window]

Résumé

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nous étudions les résonances de Rayleigh créées par une boule en dimension deux et trois. Nous savons qu’elles convergent exponentiellement vite vers l’axe réel. Nous calculons exactement les fonctions résonantes associées puis nous les estimons asymptotiquement en fonction de la partie réelle des résonances. L’application de la formule de Green nous donne alors le taux de décroissance exponentielle de la partie imaginaire des résonances.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2006

References

[Be] Bellassoued, M., Distribution of resonances and decay rate of the local energy for the elastic wave equation. Comm. Math. Phys. 215(2000), no. 2, 375408.Google Scholar
[Bur] Burq, N., Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180(1998), no. 1, 129.Google Scholar
[Ga1] Gamblin, D., Résonances de Rayleigh en dimension deux. Thèse de doctorat de l’Univ. Paris 13, 2002.Google Scholar
[Ga2] Gamblin, D., Résonances de Rayleigh en dimension deux. Bull. Soc. Math. France 132(2004), no. 2, 263304.Google Scholar
[Gre] Gregory, R., The propagation of Rayleigh waves over curved surfaces at high frequency. Proc. Cambridge Philos. Soc. 70(1971), 103121.Google Scholar
[IN] Ikehata, M. et Nakamura, G., Decaying and nondecaying properties of the local energy of an elastic wave outside an obstacle. Japan J. Appl. Math. 6(1989), no. 1, 8395.Google Scholar
[Ka] Kawashita, M., On the local-energy decay property for the elastic wave equation with the Neumann boundary conditions. Duke Math. J. 67(1992), no. 2, 333351.Google Scholar
[MoFe] Morse, P. et Feshbach, H., Methods of theoretical physics. McGraw-Hill, New York, 1953.Google Scholar
[Ol1] Olver, F., The asymptotic solution of linear differential equations of second order for large values of parameter. Philos. Trans. Roy. Soc. London Ser. A. 247(1954), 307327.Google Scholar
[Ol2] Olver, F., The asymptotic expansion of Bessel functions of large order. Philos. Trans. Roy. Soc. London Ser. A. 247(1954),, 328368.Google Scholar
[Ol3] Olver, F., Asymptotics and special functions. Academic Press, New York, 1974.Google Scholar
[SjVo] Sjöstrand, J. et Vodev, G., Asymptotics of the number of Rayleigh resonances. Math. Ann. 309(1997), no. 2, 287306.Google Scholar
[SjZw] Sjöstrand, J. et Zworski, M., Complex scaling method and the distribution of scattering poles. J. Amer.Math. Soc. 4(1991), no. 4, 729769.Google Scholar
[St1] Stefanov, P., Lower bounds of the number of the Rayleigh resonances for arbitrary body. Indiana Univ.Math. J. 49(2000), no. 1, 405426.Google Scholar
[St2] Stefanov, P., Resonance expansions and Rayleigh waves. Math. Res. Lett. 8(2001), no. 1-2, 105124.Google Scholar
[StVo1] Stefanov, P. et Vodev, G., Distribution of resonances for the Neumann problem in linear elasticity outside a ball. Ann. Inst. H. Poincaré Phys. Théor. 60(1994), no. 3, 303321.Google Scholar
[StVo2] Stefanov, P. et Vodev, G., Distribution of resonances for the Neumann problem in linear elasticity outside a strictly convex body. Duke Math. J. 78(1995), no. 3, 677714.Google Scholar
[StVo3] Stefanov, P. et Vodev, G., Neumann resonances in linear elasticity for an arbitrary body. Comm. Math. Phys. 176(1996), no. 3, 645659.Google Scholar
[TaZw] Tang, S.-H. et Zworski, M., Resonance expansions of scattered waves. Comm. Pure Appl. Math. 53(2000), no. 10, 13051334.Google Scholar
[Tay] Taylor, M., Rayleigh waves in linear elasticity as a propagation of singularities phenomenon. Dans: Partial Differential Equations and Geometry, Marcel Dekker, New York, 1979, pp. 273291.Google Scholar
[To] Tokita, T., Exponential decay of solutions for the wave equation in the exterior domain with spherical boundary. J. Math. Kyoto Univ. 12(1972), 413430.Google Scholar
[Vo] Vodev, G., Existence of Rayleigh resonances exponentially close to the real axis. Ann. Inst. H. Poincaré Phys. Théor. 67(1997), no. 1, 4157.Google Scholar