Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T12:45:47.422Z Has data issue: false hasContentIssue false

On the Maximum Principle of Ky Fan

Published online by Cambridge University Press:  20 November 2018

M. Marcus
Affiliation:
University of British Columbia
B. N. Moyls
Affiliation:
University of British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1951 Fan (1) proved the following interesting extreme value result: Let A1, … , Am be completely continuous operators on a Hilbert space . For be the characteristic roots of Aσ* Aσ. Then, for any positive integer k,

(1),

(2),

where both maxima are taken over all unitary operators U1, … , Um and all sets of k orthonormal (o.n.) vectors.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1957

References

1. Fan, K., Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. N.A.S. (U.S.A.), 37 (1951), 760766.Google Scholar
2. Fenchel, W., Généralisation du théorème de Brunn-Minkowski concernant les corps convexes, C.R. des Sci. de l'Acad. des Sci., 203 (1936), 764766.Google Scholar
3. Horn, A., On the singular values of a product of completely continuous operators, Proc. N.A.S. (U.S.A.), 36 (1950), 374375.Google Scholar
4. Marcus, M. D. and Lopes, L., Inequalities for symmetric functions and Hermitian matrices, Can. J. Math., 9 (1957), 305312.Google Scholar
5. Marcus, M. D. and McGregor, J. L., Extremal properties of Hermitian matrices, Can. J. Math., 8 (1956), 524531.Google Scholar
6. Ostrowski, A., Sur quelques applications des fonctions convexes et concaves au sens de I. Schur, J. Math, pures et appl. (9), 31 (1952), 253292.Google Scholar
7. Pólya, G., Remark on WeyVs note: Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. N.A.S. (U.S.A.), 36 (1950), 49–51.Google Scholar
8. Roy, S. N., A useful theorem in matrix theory, Proc. Amer. Math. Soc, 5 (1954), 635638.Google Scholar
9. Nagy, B. Sz., Remark on S. N. Roy's paper: A useful theorem in matrix theory, Proc. Amer. Math. Soc, 7 (1956), 1.Google Scholar
10. von Neumann, J., Some matrix-inequalities and metrization of matrix-space, Tomsk Univ. Rev., 1 (1937), 286300.Google Scholar
11. Wedderburn, J. H. M., Lectures on Matrices, Amer. Math. Soc. Colloq. Publications, 17 (1934).Google Scholar
12. Weyl, H., Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. N.A.S. (U.S.A.), 35 (1949), 408411.Google Scholar