Published online by Cambridge University Press: 20 November 2018
Let T be an invertible measure-preserving transformation on a σ-finite measure space (X, μ) and let 1 < p < ∞. This paper uses an abstract method developed by José Luis Rubio de Francia which allows us to give a unified approach to the problems of characterizing the positive measurable functions v such that the limit of the ergodic averages or the ergodic Hilbert transform exist for all f ∈ Lp(νdμ). As a corollary, we obtain that both problems are equivalent, extending to this setting some results of R. Jajte, I. Berkson, J. Bourgain and A. Gillespie. We do not assume the boundedness of the operator Tf(x) = f(Tx) on Lp(νdμ). However, the method of Rubio de Francia shows that the problems of convergence are equivalent to the existence of some measurable positive function u such that the ergodic maximal operator and the ergodic Hilbert transform are bounded from LP(νdμ) into LP(udμ). We also study and solve the dual problem.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.