Hostname: page-component-7dd5485656-npwhs Total loading time: 0 Render date: 2025-10-30T14:40:11.118Z Has data issue: false hasContentIssue false

On Some Theorens of Doetsch

Published online by Cambridge University Press:  20 November 2018

P. G. Rooney*
Affiliation:
University of Toronto
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The spaces P(ω), 1 ⩽ p ⩽ ∞, ω real are defined to consist of those analytic functions ƒ(s), regular for Re s > ω and for which μP(ƒ;x) is bounded for x > ω where

(1.1), 1 ⩽ p ⩽ ∞and

(1.2)

Information

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1958 

Footnotes

This work was done while the author held a summer research associateship of the National Research Council of Canada.

References

1. Doetsch, G., Ueber die obere Grenze des absoluten Betrags einer analytischen Funktion auf Geraden, Math. Zeit., 8 (1920), 237240.Google Scholar
2. Doetsch, G., Bedingungen fur die Darstellbarkeit einer Funktion als Laplace-Integral und eine Umkehrformel fur die Laplace-Transformation, Math. Zeit., 42 (1937), 263286.Google Scholar
3. Doetsch, G., Handbuch der Laplace-Transformation (Basel, 1950).Google Scholar
4. Hille, E. and Tamarkin, J. D., On the theory of Laplace integrals I, II, Proc. Nat. Acad. Sci., 19 (1933), 908-912, 20 (1934), 140144.Google Scholar
5. Paley, R.E.A.C. and Wiener, N., Fourier transforms in the complex domain (New York, 1934).Google Scholar
6. Rooney, P. G., On an inversion formula for the Laplace transformation, Can. J. Math., 7 (1955), 101115.Google Scholar
7. Rooney, P. G., Laplace transforms and generalized Laguerre polynomials, Can. J. Math, (to appear).Google Scholar
8. Titchmarsh, E. C., Introduction to the theory of Fourier integrals (2nd. ed.; Oxford, 1948).Google Scholar