Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-02-10T23:25:38.176Z Has data issue: false hasContentIssue false

On class groups of upper cluster algebras

Published online by Cambridge University Press:  24 January 2025

Mara Pompili*
Affiliation:
Department of Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstrasse 36, Graz 8010, Austria

Abstract

We compute the class groups of full rank upper cluster algebras in terms of the exchange polynomials. This characterizes the UFDs among these algebras. Our results simultaneously generalize theorems of Garcia Elsener, Lampe, and Smertnig from 2019 and of Cao, Keller, and Qin from 2023. Furthermore, we show that every (upper) cluster algebra is a finite factorization domain.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was partially supported by the Austrian Science Fund (FWF), project 10.55776/DOC-183-N

References

Anderson, D. D., Anderson, D. F., and Zafrullah, M., Factorization in integral domains. II . J. Algebra 152(1992), no. 1, 7893.Google Scholar
Berenstein, A., Fomin, S., and Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells . Duke Math. J. 126(2005), no. 1, 152. https://doi.org/10.1215/S0012-7094-04-12611-9.Google Scholar
Cao, P., Keller, B., and Qin, F., The valuation pairing on an upper cluster algebra . J. Reine Angew. Math, vol. 2024 (2024), no. 806, 71114. https://doi.org/10.1515/crelle-2023-0080.Google Scholar
Fossum, R. M., The divisor class group of a krull domain, volume 74 of Ergebnisse der Mathematik und Ihrer Grenzgebiete, Springer, Berlin, 1973.Google Scholar
Fomin, S. and Zelevinsky, A., Cluster algebras. I. Foundations . J. Amer. Math. Soc. 15(2002), no. 2, 497529. https://doi.org/10.1090/S0894-0347-01-00385-X.Google Scholar
Fomin, S. and Zelevinsky, A., Cluster algebras: Notes for the CDM-03 conference . In: A. J. de Jong, D. Jerison, G. Lusztig, B. Mazur, W. Schmid, and S.-T. Yau (eds.), Current developments in mathematics, International Press, Somerville, MA, 2003, pp. 134.Google Scholar
Elsener, A. G., Lampe, P., and Smertnig, D., Factoriality and class groups of cluster algebras . Adv. Math. 358(2019), 106858, 48. https://doi.org/10.1016/j.aim.2019.106858.Google Scholar
Geroldinger, A. and Halter-Koch, F., Non-unique factorizations: Algebraic, combinatorial and analytic theory, volume 278 of Pure and Applied Mathematics (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2006.Google Scholar
Geiss, C., Leclerc, B., and Schröer, J., Factorial cluster algebras . Doc. Math. 18(2013), 249274.Google Scholar
Kainrath, F., Factorization in Krull monoids with infinite class group . Colloq. Math. 80(1999), no. 1, 2330. https://doi.org/10.4064/cm-80-1-23-30.Google Scholar
Keller, B., Cluster algebras and derived categories . In: Y. Kawamata (ed.), Derived categories in algebraic geometry, EMS Series of Congress Reports, European Mathematical Society, Zürich, 2012, pp. 123183.Google Scholar
Leclerc, B., Cluster algebras and representation theory . In: R. Bhatia, A. Pal, G. Rangarajan, V. Srinivas, and M. Vanninathan (eds.), Proceedings of the international congress of mathematicians. Vol. 4, Hindustan Book Agency, New Delhi, 2010, pp. 24712488.Google Scholar
Leclerc, B. and Williams, L. K., Cluster algebras . Proc. Natl. Acad. Sci. USA 111(2014), no. 27, 96769679. https://doi.org/10.1073/pnas.1410635111.Google Scholar
Matherne, J. P. and Muller, G., Computing upper cluster algebras . Int. Math. Res. Not. 11(2015), 31213149. https://doi.org/10.1093/imrn/rnu027.Google Scholar
Muller, G., Locally acyclic cluster algebras . Adv. Math. 233(2013), 207247. https://doi.org/10.1016/j.aim.2012.10.002.Google Scholar
Muller, G., $=$ for locally acyclic cluster algebras. SIGMA Symm. Integr. Geom. Methods Appl. 10(2014), Paper 094, 8. https://doi.org/10.3842/SIGMA.2014.094.Google Scholar
Nakanishi, T., Cluster algebras and scattering diagrams . Part I. Basics Cluster Algebras (2022). Preprint, https://arxiv.org/abs/2201.11371.Google Scholar
Zelevinsky, A., Cluster algebras: Origins, results and conjectures . In: K.-B. Nam, B. R. Harris, S. Jain, D. Kim, D. W. Lee, G. S. Seo, and Y. G. Kim (eds.), Advances in algebra towards millennium problems, SAS International Publications, Delhi, 2005, pp. 85105.Google Scholar