Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:00:47.870Z Has data issue: false hasContentIssue false

Notes on Extensions of Hopf Algebras

Published online by Cambridge University Press:  20 November 2018

Nicolás Andruskiewitsch
Affiliation:
FAMAF Medina Allende y Hay a de la Torre 5000 Ciudad Universitaria Córdoba Argentina, e-mail: andrus@mate.uncor.edu, andrus@mpim-bonn.mpg.de Mathematisches Institut Universität München D-80333 München Germany, hanssch@rz.mathematik.unimuenchen.de
Ruskie Witsch
Affiliation:
Mathematisches Institut Universität München D-80333 München Germany, hanssch@rz.mathematik.unimuenchen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article contains examples and applications of the notion of exact sequences of Hopf algebras.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

[A] Andruskiewitsch, N., Some exceptional compact matrix pseudogroups, Bull. Soc. Math. France 120(1992), 297325.Google Scholar
[AD] Andruskiewitsch, N. and Devoto, J., Extensions of Hopf algebras, Algebra i Analiz (1) 7(1995), 2261.Google Scholar
[BCM] Blattner, R.J., Cohen, M. and Montgomery, S., Crossed products and inner actions of Hopf algebras, Trans. Amer. Math. Soc. 298(1986), 671711.Google Scholar
[BM] Blattner, R.J. and Montgomery, S., Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137(1989), 3754.Google Scholar
[Bou] Bourbaki, N., Groupes et algébres de Lie. Chapitres 4, 5 et 6 Hermann, Paris, 1968.Google Scholar
[Br] Brown, K.S., Cohomology of groups. Graduate Texts in Math. 87, Springer, Berlin, Heidelberg, New York, 1982.Google Scholar
[By] Byott, N.P., Cleft extensions of Hopf algebras, J. Algebra 157(1993), 405429.Google Scholar
[By2] Byott, N.P., Cleft extensions of Hopf algebras II, Proc. London Math. Soc. (3) 67(1993), 277304.Google Scholar
[CE] Cartan, H. and Eilenberg, S., Homological algebra. Princeton Univ. Press, 1956.Google Scholar
[CM] Chin, W. and Musson, I., The coradical filtration for quantized enveloping algebras, 1994. preprint.Google Scholar
[Ci] Cibils, C., A quiver quantum group, Comm. Math. Phys. 157(1993), 459477.Google Scholar
[dCKP] de Concini, C., Kac, V.G. and Procesi, C., Quantum coadjoint action, J. Amer. Math. Soc. 5, 151189.Google Scholar
[dCL] de Concini, C. and Lyubashenko, V., Quantum Function algebra at roots of, Adv. Math. 108(1994), 205261.Google Scholar
[dCP] de Concini, C. and Procesi, C., Quantum Groups, Matem. 6, Scuola Norm. Sup. Pisa, (1993), preprint.Google Scholar
[DG] Demazure, M. and Gabriel, P., Groupes algèbriques. Masson & Cie, Paris, 1970.Google Scholar
[DT] Doi, Y. and Takeuchi, M., Cleft comodule algebras for a bialgebra, Comm. Algebra 14(1986), 801818.Google Scholar
[Dr] Drinfeld, V.G., Quantum groups. Proc. of the ICM, Berkeley, 1986. 798820.Google Scholar
[Gr] Greither, C., Extensions of finite group schemes, and Hopf Galois extensions over a complete discrete valuation ring, Math. Z. 210(1992), 3767.Google Scholar
[H] Hall, M., The theory of groups. MacMillan, New York, 1959.Google Scholar
[Hf] Hofstetter, I., Erweiterungen von HopfAlgebren und ihre kohomologische Beschreibung, Dissertation Universität Munchen, 1990. J. Algebra 164(1994), 264298.Google Scholar
[Ho] Holt, V.G., An interpretation of the cohomology groups Hn(G,M), J. Algebra 60(1979), 307320.Google Scholar
[J] Jimbo, M., A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10(1985), 6369.Google Scholar
[K] Kostant, B., Groups over Z, Proc. Sympos. Pure Math. 9(1966), 9098.Google Scholar
[Kc] Kac, V., Infinite dimensional Lie algebras. Cambridge Univ. Press, Cambridge, 1985.Google Scholar
[Li] Lin, Z., Induced representations of Hopf algebras: applications to quantum groups at roots of 1,J. Algebra 154(1993), 152187.Google Scholar
[Lo] Loday, V.G., Cohomologie et groupes de Steinberg relatives, J. Algebra 54(1978), 178202.Google Scholar
[LI] Lusztig, G., Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70(1988), 237249.Google Scholar
[L2] Lusztig, G., Modular representations and quantum groups, Contemp. Math. 82(1989), 5977.Google Scholar
[L3] Lusztig, G., Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. (1) 3,257296.Google Scholar
[L4] Lusztig, G., Quantum groups at roots of\, Geom. Dedicata 35(1990), 89114.Google Scholar
[L5] Lusztig, G., Introduction to quantized enveloping algebras, In: Proc. of the Third Workshop on Lie Groups Representations and its applications, Carlos Paz, 1989. Progr. Math. 105, Birkhäuser.Google Scholar
[LR] Larson, A.R.G. and Radford, D.E., Semisimple Hopf algebras, (1989), preprint.Google Scholar
[McL] Mac Lane, S., Categories for the Working Mathematician. Springer- Verlag, 1971.Google Scholar
[Mj] Majid, S., More examples of bicrossproduct and double crossproduct Hopf algebras, Israel J. Math. 72(1990), 133148.Google Scholar
[Ma] Majid, S., Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 130(1990), 1764.Google Scholar
[MjS] Majid, S. and Ya. Soibelman, Bicrossproduct structure of the quantum Weyl group, J. Algebra 163(1994), 6887.Google Scholar
[M] Manin, Y.I., Quantum groups and non-commutative geometry. Les Publications du CRM 1561, Montreal, 1988.Google Scholar
[Ms] Masuoka, A., Semisimple Hopf algebras of dimension 6, 8, preprint.Google Scholar
[NZ] Nichols, W.D. and Zoeller, M.B., A Hopf algebra freeness theorem, Amer. J. Math. 111(1989), 381385.Google Scholar
[OS] Oberst, U. and Schneider, H.-J., Untergruppen formeller Gruppen von endlichen Index, J. Algebra 31 (1974), 1(M4)Google Scholar
[R] Radford, D., Hopf algebras with projection, J. Algebra 92(1985), 322347.Google Scholar
[Se] Serre, J.-P., Cohomologie galoisienne. Lecture Notes in Math. 5, Springer-Verlag, 1964.Google Scholar
[Si] Singer, W., Extension theory for connected Hopf algebras, J. Algebra 21(1972), 1—16.Google Scholar
[Sch] Schneider, H.-J., Some remarks on exact sequences of quantum groups, Comm. Algebra (9) 21(1993), 33373358.Google Scholar
[Sch2] Schneider, H.-J., Zerlegbare Erweiterungen qffiner Gruppen, J. Algebra 66(1980), 569593.Google Scholar
[Sch3] Schneider, H.-J., Zerlegbare Untergruppen affiner Gruppen, Math. Ann. 255(1981), 139158.Google Scholar
[Sch4] Schneider, H.-J., Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 152(1992), 289312.Google Scholar
[Sch5] Schneider, H.-J., Hopf Galois extensions, crossed products and Clifford theory, Proc. of the Conference on Hopf algebras and their actions on rings, 1992. to appear.Google Scholar
[Sw] Sweedler, M., Hopf algebras. Benjamin, New York, 1969.Google Scholar
[Sw2] Sweedler, M., Cohomology of algebras over Hopf algebras, Trans. Amer. Math. Soc. 133(1968), 205239.Google Scholar
[Tl] Takeuchi, M., Finite dimensional representations of the quantum Lorentz group, Comm. Math. Phys. 144(1992), 557580.Google Scholar
[T2] Takeuchi, M., Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra (8) 9(1981), 841882.Google Scholar
[T3] Takeuchi, M., Relative Hopf modules—equivalences andfreeness criteria, J. Algebra 60(1979), 452—471.Google Scholar
[T4] Takeuchi, M., Some topics on GLq(n), J. Algebra 147(1992), 379410.Google Scholar
[T5] Takeuchi, M., Quotient spaces for Hopf algebras, Comm. Algebra (7) 22(1994), 25032523.Google Scholar
[Tf] Taft, E.J., The order of the antipode of a finite dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68(1971), 26312633.Google Scholar
[TO] Tate, J. and Oort, F., Group schemes of prime order, Ann. Sci. École Norm. Sup. 3(1970), 1—21.Google Scholar
[W] Woronowicz, S.L., Compact matrixpseudogroups, Comm. Math. Phys. 111(1987), 613665.Google Scholar
[Z] Yongchang Zhu, Hopf algebras of prime dimension, Internat. Math. Res. Notices 1(1994), 5359.Google Scholar