Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:05:23.015Z Has data issue: false hasContentIssue false

Matrices Sous-Stochastiques et Fonctions Convexes

Published online by Cambridge University Press:  20 November 2018

Pal Fischer
Affiliation:
Université de Guelph, Guelph, Ontario
John A. R. Holbrook
Affiliation:
Université de Guelph, Guelph, Ontario
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dans cette note on se propose d'étendre certains résultats de L. Mirsky concernant des matrices doublement sous-stochastiques [5; 6; 7].

On commence par rappeler des définitions et notations qu'on aura à utiliser par la suite.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

Bibliographie

1. Birkhoff, G., Yes observaciones sobre el algebra lineal, Rev. Univ. Nac. Tucumân A5(1946), 147151.Google Scholar
2. Chong, K. M., An induction theorem for rearrangements, Can. J. Math. 28 (1976), pp. 154160.Google Scholar
3. Hardy, G. H., Littlewood, J. E., et G. Pôlya, Inequalities, second edition (Cambridge U.P., 1952).Google Scholar
4. Meyer, P. A., Probability and potentials (Blaisdell Publishing Company, 1966).Google Scholar
5. Mirsky, L., On a convex set of matrices, Archiv der Math. 10 (1959), 8892.Google Scholar
6. Mirsky, L. Inequalities for certain classes of convex functions, Proc. Edinburgh Math. Soc. 11 (1958/9), 231235.Google Scholar
7. Mirsky, L. Majorization of vectors and inequalities for convex functions, Monatshefte fur Mathematik 05 (1961), 159169.Google Scholar
8. Pôlya, G., Remark on WeyVs note: Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. 36 (1950), 4951.Google Scholar
9. Rado, R., An inequality, J. London Math. Soc. 27 (1952), 16.Google Scholar