Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T22:18:12.520Z Has data issue: false hasContentIssue false

Loops as Invariant Sections in Groups, and their Geometry

Published online by Cambridge University Press:  20 November 2018

Péter T. Nagy
Affiliation:
Bolyai Institute University of Szeged, Aradi vértanulc tere I H-6720 Szeged, Hungary
Karl Strambach
Affiliation:
Mathematisches Institut der Universität Erlangen-Nürnberg, Bismarckstr. 1½ D-91054 Erlangen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate left conjugacy closed loops which can be given by invariant sections in the group generated by their left translations. These loops are generalizations of the conjugacy closed loops introduced in [13] just as Bol loops generalize Moufang loops. The relations of these loops to common classes of loops are studied. For instance on a connected manifold we construct proper topological left conjugacy closed loops satisfying the left Bol condition but show that any differentiable such loop must be a group. We show that the configurational condition in the 3-net corresponding to an isotopy class of left conjugacy closed loops has the same importance in the geometry of 3-nets as the Reidemeister or the Bol condition.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1994

References

1. Albert, A. A., Quasigroups II, Trans. Amer. Math. Soc. 55(1944), 401419.Google Scholar
2. Barlotti, A. and Strambach, K., The geometry of binary systems, Adv. Math. 49(1983), 1105.Google Scholar
3. Belousov, V. D., Foundations of the Theory of Quasigroups and Loops (Russian), Nauka, Moscow 1976.Google Scholar
4. Brack, R. H., Contributions to the Theory of Loops, Trans. Amer. Math. Soc. 60(1946), 245354.Google Scholar
5. Brack, R. H., A Survey of Binary Systems, Ergebnisse der Math. 20, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1958.Google Scholar
6. Brack, R. H. and Paige, L. J., Loops whose inner mappings are automorphisms, Ann. in Math. 63(1956), 308323.Google Scholar
7. Burn, R. P., Finite Bol loops, Math. Proc. Cambridge Philos. Soc. 84(1978), 377385.Google Scholar
8. Burn, R. P., Finite Bol loops II, Math. Proc. Cambridge Philos. Soc. 89(1981), 445455.Google Scholar
9. Chein, O., Examples and methods of construction, in Quasigroups and Loops. In: Theory and Applications,(eds. O. Chein, H.O. Pflugfelder and J.D.H. Smith), Sigma Series in Pure Math. 8, Heldermann-Verlag, Berlin 1990, 2793.Google Scholar
10. Chiboka, V. O., Conjugacy closed loops of Moufang type, Riv. Mat. Pura Appl. 10(1991), 8993.Google Scholar
11. Fenyves, F., Extra loops I, Publ. Math. Debrecen 15(1968), 235238.Google Scholar
12. Fenyves, F., Extra loops II. On loops with identities of Bol-Moufang type, Publ. Math. Debrecen 16(1969), 187192.Google Scholar
13. Goodaire, E. G. and Robinson, D. A., A class of loops which are isomorphic to all loop isotopes, Canad. J. Math. 34(1982), 662672.Google Scholar
14. Hofmann, K. H. and Strambach, K., Topological and analytical loops, in Quasigroups and Loops. In: Theory and Applications, (eds. O. Chein, H.O. Pflugfelder and J.D.H. Smith), Sigma Series in Pure Math. 8, Heldermann-Verlag, Berlin, 1990, 205262.Google Scholar
15. Hofmann, K. H. and Strambach, K., Torsion and curvature of smooth loops, Publ. Math. Debrecen 38(1991), 189214.Google Scholar
16. Holmes, J. P., Dijferentiable power-associative groupoids, Pacific Math. J. 41(1972), 391394.Google Scholar
17. Huppert, B., Endliche Gruppen I, Grundlehren der Math. Wiss. 134, Springer-Verlag, Berlin, New York, 1967.Google Scholar
18. Kikkawa, M., Geometry of homogenous Lie loops, Hiroshima Math. J. 5 (1975), 141178.Google Scholar
19. Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry I, Wiley Interscience Publishers, New York, London, 1963.Google Scholar
20. Nagy, P.T., 3-nets with maximal family of two-dimensional subnets, Abh. Math. Sem. Univ. Hamburg 61(1991), 203211.Google Scholar
21. Pflugfelder, H.O., Quasigroups and Loops: An Introduction, Heldermann-Verlag, Berlin, 1990.Google Scholar
22. Pickert, G., Projektive Ebenen, Springer-Verlag, Berlin, Heidelberg, New York, Second Edition, 1975.Google Scholar
23. Robinson, K., A note on Bol loops of order 2nk, Aequationes Math. 22(1981), 302306.Google Scholar
24. Shelekhov, A. M., New closure conditions and some problems in loop theory, Aequationes Math. 41(1991), 7984.Google Scholar
25. Tits, J., Liesche Gruppen und Algebren, Hochschultext, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.Google Scholar