Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:49:16.307Z Has data issue: false hasContentIssue false

Intégration Du Sous-Différentiel Proximal: Un Contre Exemple

Published online by Cambridge University Press:  20 November 2018

Joël Benoist*
Affiliation:
Département de Mathématiques Faculté des Sciences 123, rue Albert Thomas 87060 Limoges France, e-mail: benoist@cict.fr
Rights & Permissions [Opens in a new window]

Résumé

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Etant donnée une partie $D$ dénombrable et dense de $\mathbb{R}$, nous construisons une infinité de fonctions Lipschitziennes définies sur $\mathbb{R}$, s'annulant en zéro, dont le sous-différentiel proximal est égal à ]–1, 1[ en tout point de $D$ et est vide en tout point du complémentaire de $D$. Nous déduisons que deux fonctions dont la différence n'est pas constante peuvent avoir les mêmes sous-différentiels.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1998

References

1. Clarke, F.H., Generalized gradients and applications. Trans. Am.Math. Soc. 205(1975), 247262.Google Scholar
2. Clarke, F.H., Optimization and Nonsmooth Analysis. John Wiley, New York, 1983.Google Scholar
3. Clarke, F.H. and Redheffer, R.M., The proximal subgradient and constancy. Canad. Math. Bull. 36 (1993), 3032.Google Scholar
4. Clarke, F.H., Ledyaev, Yu. S. and Wolenski, P. R., Proximal analysis and minimization principles. J.Math. Anal. App. 196(1995), 722735.Google Scholar
5. Clarke, F.H., SternandP, R.J.. Wolenski, R., Subgradient criteria for monotonicity, the Lipschitz condition, and convexity. Can. J. Math. (6) 45(1993), 11671183.Google Scholar
6. Jouini, E., A remark on Clarke's normal cone and the marginal cost pricing rule. J. Math. Econom. 17(1988), 309315.Google Scholar
7. Poliquin, R.A., Integration of subdifferentials of nonconvex functions. Nonlinear Anal. (4) 17(1991), 385398.Google Scholar
8. Rockafellar, R.T., Convex Analysis. Princeton University Press, New Jersey, 1970.Google Scholar
9. Rockafellar, R.T., Proximal subgradients, marginal values, and augmented lagrangians in nonconvex optimization. Math.Op. Res. 6(1981), 424436.Google Scholar
10. Rockafellar, R.T., The theory of subgradients and its applications; convex and non convex functions. Helderman Verlag, Berlin, 1981.Google Scholar
11. Saks, S., Theory of the integral. Second revised edition, Hafner Publishing Co., New York, 1937.Google Scholar