Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T15:58:50.261Z Has data issue: false hasContentIssue false

Hausdorff and Quasi-Hausdorff Matrices on Spaces of Analytic Functions

Published online by Cambridge University Press:  20 November 2018

P. Galanopoulos
Affiliation:
Department of Mathematics, University of Crete, 71409 Heraklion, Greece e-mail: papadim@math.uoc.gr
M. Papadimitrakis
Affiliation:
Department of Mathematics, University of Crete, 71409 Heraklion, Greece e-mail: papadim@math.uoc.gr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider Hausdorff and quasi-Hausdorff matrices as operators on classical spaces of analytic functions such as the Hardy and the Bergman spaces, the Dirichlet space, the Bloch spaces and $\text{BMOA}$. When the generating sequence of the matrix is the moment sequence of a measure $\mu$, we find the conditions on $\mu$ which are equivalent to the boundedness of the matrix on the various spaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2006

References

[1] Andersen, K. F., Cesàro averaging operators on Hardy spaces. Proc. Roy. Soc. Edinburgh Sect. A 126(1996), no. 3, 617624.Google Scholar
[2] Anderson, J. M., Clunie, J., and Pommerenke, Ch., On Bloch functions and normal functions. J. Reine Angew. Math. 270(1974), 1237.Google Scholar
[3] Deddens, J. A., On spectra of Hausdorff operators on l2 + . Proc. Amer. Math. Soc. 72(1978), no. 1, 7476.Google Scholar
[4] Duren, P. L., Theory of Hp spaces. Pure and Applied Mathematics 38, Academic Press, New York, 1970.Google Scholar
[5] Galanopoulos, P. and Siskakis, A., Hausdorf Matrices and Composition operators. Illinois J. Math., 45(2001), no. 3, 757773.Google Scholar
[6] Garabedian, H. L., Hausdorff matrices. Amer. Math. Monthly 46(1939) 390410.Google Scholar
[7] Garnett, J. B., Bounded Analytic Functions. Pure and Applied Mathematics 96, Academic Press, New York, 1981.Google Scholar
[8] Hardy, G. H., Divergent Series. Clarendon Press, Oxford, 1949.Google Scholar
[9] Hardy, G. H., An inequality for Hausdorff means. J. London Math. Soc. 18(1943), 4650.Google Scholar
[10] Hausdorff, F., Summationsmethoden und Momentfolgen. I. Math. Z. 9(1921), 74109.Google Scholar
[11] Leibowitz, G., Discrete Hausdorff transformations. Proc. Amer. Math. Soc. 38(1973), 541544.Google Scholar
[12] Rhoades, B. E., Spectra of some Hausdorff operators. Acta Sci. Math. (Szeged) 32(1971), 91100.Google Scholar
[13] Rudolf, O., Hausdorff-Operatoren auf BK-Räumen und Halbgruppen linearer Operatoren. Mitt. Math. Sem. Giessen 241(2000).Google Scholar
[14] Zhu, K., Operators on Banach spaces of analytic functions. Marcel Dekker, 1990.Google Scholar
[15] Zygmund, A., Trigonometric Series. vol. I Cambridge Univ. Press, 1977.Google Scholar