Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:17:52.392Z Has data issue: false hasContentIssue false

A Generalized Poisson Transform of an Lp-Function over the Shilov Boundary of the n-Dimensional Lie Ball

Published online by Cambridge University Press:  20 November 2018

Fouzia El Wassouli*
Affiliation:
Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $D$ be the $n$-dimensional Lie ball and let $B\text{(S)}$ be the space of hyperfunctions on the Shilov boundary $S$ of $D$. The aim of this paper is to give a necessary and sufficient condition on the generalized Poisson transform ${{P}_{l,\text{ }\!\!\lambda\!\!\text{ }}}f$ of an element $f$ in the space $B\text{(S)}$ for $f$ to be in ${{L}^{p}}\left( S \right)$, $1\,<\,p\,<\,\infty $. Namely, if $F$ is the Poisson transform of some $f\in \,B(S)$$F\,=\,{{P}_{l,\lambda }}f$), then for any $l\,\in \,Z$) and $\lambda \,\in \,C$ such that $Re[\text{i}\lambda ] > \frac{n}{2}\,-\,1$, we show that $f\,\in \,{{L}^{p}}\text{(}S\text{)}$ if and only if $f$ satisfies the growth condition

$${{\left\| F \right\|}_{\lambda ,p}}=\underset{0\le r<1}{\mathop{\sup }}\,{{\left( 1\,-\,{{r}^{2}} \right)}^{\operatorname{Re}\left[ \text{i }\lambda \text{ } \right]-\frac{n}{2}+l}}{{\left[ \,\int_{s}{{{\left| F\left( ru \right) \right|}^{p}}du} \right]}^{\frac{1}{p}}}<\,+\infty $$

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Ben S, S.äıd, Hardy-type spaces for eigenfunctions of invariant differential operators on homogenous line bundles over Hermitian symmetric spaces. Complex Var. Theory Appl. 48(2003), no. 10, 865–876. doi:10.1080/02781070310001617547Google Scholar
[2] El Wassouli, F., Représentation Lp-intégrale des solutions du système d’ équations différentielles de Hua sur la boule de Lie. Thesis, Ibn Tofail University, Faculty of Sciences, 2007.Google Scholar
[3] El Wassouli, F., Function spaces and reproducing kernels on bounded symmetric domains. J. Funct. Anal. 88(1990), no. 1, 64–89. doi:10.1016/0022-1236(90)90119-6Google Scholar
[4] Helgason, S., Groups and geometric analysis. Integral geometry, invariant differential operators and spherical functions. Pure and Applied Mathematics, 113, Academic Press, Orlando, FL, 1984.Google Scholar
[5] Hua, L. K., Harmonic analysis of functions of several variables in the classical domains. American Mathematical Society, Providence, RI, 1963.Google Scholar
[6] Okamoto, K., Tsukamoto, M., and Yokota, K., Generalized Poisson and Cauchy kernel functions on classical domains. Japan. J. Math. 26(2000), no. 1, 51–103.Google Scholar
[7] Shimeno, N., Eigenspaces of invariant differential operators on a homogeneous line bundle on a Riemannian symmetric space. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37(1990), no. 1, 201–234.Google Scholar