No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Throughout this paper, S will be a ring (not necessarily commutative) with an identity element ls ≠ 0s. We shall use R to denote a second ring, and ϕ: S→ R will be a fixed ring homomorphism for which ϕ1S = 1R.
In (7), Higman generalized the Casimir operator of classical theory and used his generalization to characterize relatively projective and injective modules. As a special case, he obtained a theorem which contains results of Eckmann (3) and of Higman himself (5), and which also includes Gaschütz's generalization (4) of Maschke's theorem. (For a discussion of some of the developments of Maschke's idea of averaging over a finite group, we refer the reader to (2, Chapter IX).) In the present paper, we define the Casimir operator of a family of S-homomorphisms of one R-module into another, and we again use this operator to characterize relatively projective and injective modules.