Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T22:15:33.930Z Has data issue: false hasContentIssue false

Exponential sums over Möbius convolutions with applications to partitions

Published online by Cambridge University Press:  09 January 2025

Debmalya Basak*
Affiliation:
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA
Nicolas Robles
Affiliation:
RAND Corporation, Engineering and Applied Sciences, 1200 S Hayes, Arlington, VA 22202, USA e-mail: nrobles@rand.org
Alexandru Zaharescu
Affiliation:
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA; and Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. BOX 1-764, Bucharest, Ro-70700, Romania e-mail: zaharesc@illinois.edu

Abstract

We establish bounds for exponential sums twisted by generalized Möbius functions and their convolutions. As an application, we prove asymptotic formulas for certain weighted chromatic partitions by using the Hardy–Littlewood circle method. Lastly, we provide an explicit formula relating the contributions from the major arcs with a sum over the zeros of the Riemann zeta-function.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartz, K. M., On some complex explicit formulae connected with the Möbius function, II . Acta Arith. 57(1991) 295305.CrossRefGoogle Scholar
Berndt, B. C., Malik, A. and Zaharescu, A., Partitions into $k$ th powers of terms in an arithmetic progression. Math. Z. 290(2018), 12771307.CrossRefGoogle Scholar
Berndt, B. C., Robles, N., Zaharescu, A. and Zeindler, D., Partitions with multiplicities associated with divisor functions . J. Math. Anal. Appl. 533(2024), no. 1.CrossRefGoogle Scholar
Calderón, C. and Zárate, M. J., A generalization of Selberg’s asymptotic formula . Arch. Math. (Basel) 56(1991), no. 5, 465470.CrossRefGoogle Scholar
Daniels, T., Bounds on the Möbius-signed partition numbers. Preprint, 2023, https://arxiv.org/abs/2310.10609.Google Scholar
Daniels, T., Biasymptotics of the Möbius- and Liouville-signed partition numbers. Preprint, 2023, https://arxiv.org/abs/2310.10617.Google Scholar
Davenport, H., On some infinite series involving arithmetical functions. II. Quart . J. Math. Oxf. 8(1937), 313320.CrossRefGoogle Scholar
Das, M., Robles, N., Zaharescu, A. and Zeindler, D., Partitions into semiprimes. Preprint, 2022, https://arxiv.org/abs/2212.12489.Google Scholar
Debryune, G. and Tenenbaum, G.. The saddle-point method for general partition functions . Indag. Math. 31(2020), no. 4, 728738.CrossRefGoogle Scholar
Dunn, A. and Robles, N., Polynomial partition asymptotics , J. Math. Anal. Appl. 459(2018), 359384.CrossRefGoogle Scholar
Gafni, A., Power partitions . J. Number Theory 163(2016), 1942.CrossRefGoogle Scholar
Gafni, A., Partitions into prime powers . Mathematika 67(2021), no. 2, 368388.CrossRefGoogle Scholar
Hardy, G. H. and Ramanujan, S., Asymptotic formulaæ in combinatory analysis . Proceedings of the London Mathematical Society, 2(1918), no. 17, 75115.CrossRefGoogle Scholar
Inoue, S., Relations among some conjectures on the Möbius function and the Riemann zeta-function . Acta Arith. 191(2019), no. 1, 132.CrossRefGoogle Scholar
Kawada, K. and Wooley, T.. On the Waring-Goldbach problem for fourth and fifth powers . Proc. London Math. Soc. 83( 2001), no. 1, 150.CrossRefGoogle Scholar
Koukoulopoulos, D., The distribution of prime numbers , Graduate Studies in Mathematics, Vol. 203, American Mathematical Society, Providence, RI, 2019.Google Scholar
Kühn, P. and Robles, N., Explicit formulas of a generalized Ramanujan sum . Int. J. Number Theory 12(2016), no. 02, 383408.CrossRefGoogle Scholar
Kumchev, A.. On Weyl Sums over primes and almost primes . Michigan Math. J. 54( 2006), 243268.CrossRefGoogle Scholar
Meinardus, G., Asymptotische aussagen über partitionen . Math. Z. 59(1954) 388398.CrossRefGoogle Scholar
Mikawa, H., On exponential sums over primes in arithmetic progressions . Tsukuba J. Math. 24(2000), no. 2, 351360.CrossRefGoogle Scholar
Norton, K. K., Upper bounds for sums of powers of divisor functions . J. Number Theory 40(1992), 6085 CrossRefGoogle Scholar
Ramachandra, K. and Sankaranarayanan, A., Notes on the Riemann zeta-function . J. Indian Math. Soc. 57(1991), 6777.Google Scholar
Robles, N. and Roy, A., Unexpected average values of generalized von Mangoldt functions in residue classes . J. Aust. Math. Soc. 111 (2021), no. 1, 127144.CrossRefGoogle Scholar
Robles, N. and Zeindler, D., Partition asymptotics over almost primes and functions of primes, in preparation.Google Scholar
Sándor, J. and Crstici, B., Handbook of number theory II, Kluwer Academic Press, 2004.CrossRefGoogle Scholar
Titchmarsh, E. C., The theory of the Riemann zeta function, Clarendon Press, Oxford, 1986.Google Scholar
Vaughan, R. C., Sommes trigonométriques sur les nombres premiers . C. R. Acad. Sci. Paris Sér. A-B 285(1977), no. 16, A981A983.Google Scholar
Vaughan, R. C., The Hardy-Littlewood method, Cambridge Tracts in Mathematics, Vol. 125, second edition, 1997.CrossRefGoogle Scholar
Vaughan, R. C., On the number of partitions into primes . Ramanujan J. 15(2008), 109121.CrossRefGoogle Scholar
Vaughan, R. C., Squares: Additive questions and partitions . Int. J. Number Theory 11(2015), no 5, 143.CrossRefGoogle Scholar
Vinogradov, I. M., The method of trigonometric sums in the theory of numbers. Trav. Inst. Math. Stekloff 23(1947), 109 pp. Russian. English translation: The method of trigonometrical sums in the theory of numbers. Translated, revised and annotated by K. F. Roth and Anne Davenport. Interscience Publishers, London-New York, 1953. x+180 pp.Google Scholar