Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T12:00:26.123Z Has data issue: false hasContentIssue false

Discrete Series for p-adic SO(2n) and Restrictions of Representations of O(2n)

Published online by Cambridge University Press:  20 November 2018

Chris Jantzen*
Affiliation:
Department of Mathematics, East Carolina University, Greenville, NC 27858, U.S.A. email: jantzenc@ecu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give a classification of discrete series for $SO\left( 2n,\,F \right)$, $F$$p$–adic, similar to that of Mœglin–Tadić for the other classical groups. This is obtained by taking the Mœglin–Tadić classification for $O\left( 2n,\,F \right)$ and studying how the representations restrict to $SO\left( 2n,\,F \right)$. We then extend this to an analysis of how admissible representations of $O\left( 2n,\,F \right)$ restrict.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[Aub] Aubert, A.-M., Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique. Trans. Amer. Math. Soc. 347(1995), no. 6, 2179–2189. doi:10.2307/2154931 Erratum. Trans. Amer. Math. Soc. 348(1996), no. 11, 46874690. doi:10.1090/S0002-9947-96-01776-XGoogle Scholar
[B1] Ban, D., Parabolic induction and Jacquet modules of representations of O(2n, F). Glas. Mat. Ser. III 34(54)(1999), no. 2, 147185.Google Scholar
[B2] Ban, D., Self-duality in the case of SO(2n, F). Glas. Mat. Ser. III 34(54)(1999), no. 2, 187196.Google Scholar
[B-J1] Ban, D. and Jantzen, C., The Langlands classification for non-connected p-adic groups. Israel J. Math. 126(2001), 239261. doi:10.1007/BF02784155Google Scholar
[B-J2] Ban, D. and Jantzen, C., Degenerate principal series for even orthogonal groups. Represent. Theory 7(2003), 440480. doi:10.1090/S1088-4165-03-00166-3Google Scholar
[B-Z] Bernstein, I. N. and Zelevinsky, A. V., Induced representations of reductive p-adic groups. I. Ann. Sci. École Norm. Sup. 10(1977), no. 4, 441472.Google Scholar
[B-W] Borel, A. and Wallach, N. R., Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Mathematics Studies, 94, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1980.Google Scholar
[C] Casselman, W., Introduction to the theory of admissible representations of p-adic reductive groups, http://www.math.ubc.ca/-cass/research.html Google Scholar
[G-K] Gelbart, S. S. and Knapp, A.W., L-indistinguishability and R groups for the special linear group. Adv. in Math. 43(1982), no. 2, 101121. doi:10.1016/0001-8708(82)90030-5Google Scholar
[G1] Goldberg, D., Reducibility of induced representations for Sp(2n) and SO(n). Amer. J. Math. 116(1994), no. 5, 11011151. doi:10.2307/2374942Google Scholar
[G2] Goldberg, D., Reducibility for non-connected p-adic groups with G0 of prime index. Canad. J. Math. 47(1995), no. 2, 344363.Google Scholar
[J1] Jantzen, C., On supports of induced representations for symplectic and odd-orthogonal groups. Amer. J. Math. 119(1997), no. 6, 12131262. doi:10.1353/ajm.1997.0039Google Scholar
[J2] Jantzen, C., On square-integrable representations of classical p-adic groups. Canad. J. Math. 52(2000), no. 3, 539581.Google Scholar
[J3] Jantzen, C., Square-integrable representations of classical p-adic groups. II. Represent. Theory 4(2000), 127180. doi:10.1090/S1088-4165-00-00081-9Google Scholar
[J4] Jantzen, C., Duality and supports of induced representations for orthogonal groups. Canad. J. Math. 57(2005), no. 1, 159179.Google Scholar
[J5] Jantzen, C., Jacquet modules of induced representations for p-adic special orthogonal groups. J. Algebra, 305(2006), no. 2, 802819. doi:10.1016/j.jalgebra.2005.12.026Google Scholar
[K] Konno, T., A note on the Langlands classification and irreducibility of induced representations of p-adic groups. Kyushu J. Math. 57(2003), no. 2, 383409. doi:10.2206/kyushujm.57.383Google Scholar
[Moe1] Moeglin, C., Normalisation des opérateurs d’entrelacement et réductibilité des induites de cuspidales; le cas des groupes classiques p-adiques. Ann. of Math. 151(2000), no. 2, 817847. doi:10.2307/121049Google Scholar
[Moe2] Moeglin, C., Sur la classification des séries discrètes des groupes classiques: paramètres de Langlands et exhaustivité. J. Eur. Math. Soc. 4(2002), no. 2, 143200. doi:10.1007/s100970100033Google Scholar
[M-T] Moeglin, C. and Tadić, M., Construction of discrete series for classical p-adic groups. J. Amer. Math. Soc. 15(2002), no. 3, 715786. doi:10.1090/S0894-0347-02-00389-2Google Scholar
[Mu1] Muić, G, Composition series of generalized principal series; the case of strongly positive discrete series. Israel J. Math. 140(2004), 157202. doi:10.1007/BF02786631Google Scholar
[Mu2] Muić, G, Reducibility of generalized principal series. Canad. J. Math. 57(2005), no. 3, 616647.Google Scholar
[Mu3] Muić, G, Construction of Steinberg type representations for reductive p-adic groups. Math. Z. 253(2006), no. 3, 635652. doi:10.1007/s00209-006-0946-6Google Scholar
[S-S] Schneider, P. and Stuhler, U., Representation theory and sheaves on the Bruhat-Tits building. Inst. Hautes Études Sci. Publ. Math. 85(1997), 97191.Google Scholar
[Sh1] Shahidi, F., A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups. Ann. of Math. 132(1990), no. 2, 273330. doi:10.2307/1971524Google Scholar
[Sh2] Shahidi, F., Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math. J. 66(1992), no. 1, 141. doi:10.1215/S0012-7094-92-06601-4Google Scholar
[S1] Silberger, A. J., The Langlands quotient theorem for p-adic groups. Math. Ann. 236(1978), no. 2, 95104. doi:10.1007/BF01351383Google Scholar
[S2] Silberger, A. J., Special representations of reductive p-adic groups are not integrable. Ann. of Math. 111(1980), no. 3, 571587. doi:10.2307/1971110Google Scholar
[T1] Tadić, M., Representations of p-adic symplectic groups. Compositio Math. 90(1994), no. 2, 123181.Google Scholar
[T2] Tadić, M., Structure arising from induction and Jacquet modules of representations of classical p-adic groups. J. Algebra 177(1995), no. 1, 133. doi:10.1006/jabr.1995.1284Google Scholar
[T4] Tadić, M., On regular square integrable representations of p-adic groups. Amer. J. Math. 120(1998), no. 1, 159210. doi:10.1353/ajm.1998.0007Google Scholar
[T5] Tadić, M., On classification of some classes of irreducible representations of classical groups. In: Representations of real and p-adic groups, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 2, Singapore University Press, Singapore, 2004, pp. 95162.Google Scholar
[T6] Tadić, M., Tadić, M. On invariants of discrete series representations of classical p-adic groups. Manuscripta Math, to appear. http://www.hazu.hr/-tadic Google Scholar
[W] Waldspurger, J.-L., La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra). J. Inst. Math. Jussieu 2(2003), no. 2, 235333. doi:10.1017/S1474748003000082Google Scholar
[Z] Zelevinsky, A., Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. 13(1980), no. 2, 165210.Google Scholar
[Zh] Zhang, Y., L-packets and reducibilities. J. Reine Angew. Math. 510(1999), 83102.Google Scholar