Published online by Cambridge University Press: 28 July 2025
We study the density of the Burau representation from the perspective of a non-semisimple topological quantum field theory (TQFT) at a fourth root of unity. This gives a TQFT construction of Squier’s Hermitian form on the Burau representation with possibly mixed signature. We prove that the image of the braid group in the space of possibly indefinite unitary representations is dense. We also argue for the potential applications of non-semisimple TQFTs toward topological quantum computation.
N.G. is partially supported by NSF grant DMS-2104497. A.D.L. is partially supported by NSF grants DMS-1902092 and DMS-2200419, the Army Research Office W911NF-20-1-0075, and the Simons Foundation collaboration grant on New Structures in Low-dimensional topology. J.S. is partially supported by a Simons Foundation Travel Support Grant and PSC CUNY Enhanced Award 66685-00 54. Computations associated with this project were conducted utilizing the Center for Advanced Research Computing (CARC) at the University of Southern California.
 $\mathfrak{sl}(2)$
. J. Pure Appl. Algebra 219(2015), no. 8, 3238–3262.10.1016/j.jpaa.2014.10.012CrossRefGoogle Scholar
$\mathfrak{sl}(2)$
. J. Pure Appl. Algebra 219(2015), no. 8, 3238–3262.10.1016/j.jpaa.2014.10.012CrossRefGoogle Scholar $SL(2,\mathbb{C})$
quantum
$SL(2,\mathbb{C})$
quantum 
 $6j$
-symbols and their relation to the hyperbolic volume. Quantum Topol. 4(2013), no. 3, 303–351.10.4171/qt/41CrossRefGoogle Scholar
$6j$
-symbols and their relation to the hyperbolic volume. Quantum Topol. 4(2013), no. 3, 303–351.10.4171/qt/41CrossRefGoogle Scholar $PU(3)$
. Geom. Funct. Anal. 32(2022), no. 2, 193–235.10.1007/s00039-022-00593-9CrossRefGoogle Scholar
$PU(3)$
. Geom. Funct. Anal. 32(2022), no. 2, 193–235.10.1007/s00039-022-00593-9CrossRefGoogle Scholar $\mathfrak{sl}(2)$
-modules
. Lett. Math. Phys. 112(2022), no. 4, Paper No. 74. 27. arXiv:2108.09242.CrossRefGoogle Scholar
$\mathfrak{sl}(2)$
-modules
. Lett. Math. Phys. 112(2022), no. 4, Paper No. 74. 27. arXiv:2108.09242.CrossRefGoogle Scholar $6j$
-symbols and 3-manifold invariants
. Adv. Math. 228(2011), no. 2, 1163–1202.CrossRefGoogle Scholar
$6j$
-symbols and 3-manifold invariants
. Adv. Math. 228(2011), no. 2, 1163–1202.CrossRefGoogle Scholar $T$
circuits. Phys. Rev. A 87(2013), 032332.CrossRefGoogle Scholar
$T$
circuits. Phys. Rev. A 87(2013), 032332.CrossRefGoogle Scholar $n\theta$
modulo
$n\theta$
modulo 
 $1$
. Canad. J. Math. 20(1968), 1020–1024.CrossRefGoogle Scholar
$1$
. Canad. J. Math. 20(1968), 1020–1024.CrossRefGoogle Scholar $t$
circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110(2013, 190502.CrossRefGoogle Scholar
$t$
circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110(2013, 190502.CrossRefGoogle Scholar ${S}^2$
. II
. Commun. Pure Appl. Math. 40(1987), no. 4, 401–420.10.1002/cpa.3160400402CrossRefGoogle Scholar
${S}^2$
. II
. Commun. Pure Appl. Math. 40(1987), no. 4, 401–420.10.1002/cpa.3160400402CrossRefGoogle Scholar $z$
-rotations
. Quantum Inf. Comput. 15(2015), nos. 11–12, 932–950.Google Scholar
$z$
-rotations
. Quantum Inf. Comput. 15(2015), nos. 11–12, 932–950.Google Scholar $z$
-rotations
. Quantum Inf. Comput. 16(2016), nos. 11–12, 901–953.Google Scholar
$z$
-rotations
. Quantum Inf. Comput. 16(2016), nos. 11–12, 901–953.Google Scholar ${B}_3$
. Math. Proc. Cambridge Philos. Soc. 168(2020), no. 2, 295–304.10.1017/S0305004118000683CrossRefGoogle Scholar
${B}_3$
. Math. Proc. Cambridge Philos. Soc. 168(2020), no. 2, 295–304.10.1017/S0305004118000683CrossRefGoogle Scholar $U(1)$
. J. Number Theory 214(2020), 63–78.CrossRefGoogle Scholar
$U(1)$
. J. Number Theory 214(2020), 63–78.CrossRefGoogle Scholar $d$
-th roots of unity
. Ann. Math. (2) 179(2014), no. 3, 1041–1083.CrossRefGoogle Scholar
$d$
-th roots of unity
. Ann. Math. (2) 179(2014), no. 3, 1041–1083.CrossRefGoogle Scholar