Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T22:05:11.018Z Has data issue: false hasContentIssue false

Compactness of a Locally Compact Group G and Geometric Properties of Ap(G)

Published online by Cambridge University Press:  20 November 2018

Tianxuan Miao*
Affiliation:
Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, P7E 5E1 e-mail: tmiao@thunder.lakeheadu.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a locally compact topological group. A number of characterizations are given of the class of compact groups in terms of the geometric properties such as Radon-Nikodym property, Dunford-Pettis property and Schur property of Ap(G), and the properties of the multiplication operator on PFp(G). We extend and improve several results of Lau and Ülger [17] to Ap(G) and Bp(G) for arbitrary p.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1996

References

1. Arens, R., Operations induced in function classes, Monatsh. Math. 55(1951), 1—19.Google Scholar
2. Arens, R., The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2(1951), 839848.Google Scholar
3. Bourgin, R., Geometric aspectsof convex sets with the Radon-Nikodym property, Lecture Notes in Math. 993, Springer-Verlag, 1983.Google Scholar
4. Bunce, L. J., The Dunford-Pettis property in the predual of a Von Neumann algebra, Proc. Amer. Math. Soc. 116(1992), 99100.Google Scholar
5. Cowling, M., An application of Littlewood-Paley theory in harmonic analysis, Math. Ann. 241(1979), 8396.Google Scholar
6. Diestel, J., Sequences and series in Banach spaces, Graduate Texts in Math., Springer-Verlag, New York, 1984.Google Scholar
7. Diestel, J., A survey of results related to the Dunford-Pettis property, Contemporary Math. 2(1980), 1560.Google Scholar
8. Duncan, J. and Hosseiniun, S. A. R., The second dual of Banach algebra, Proc. Roy. Soc. Edinburgh 84A(1979), 309-325.Google Scholar
9. Forrest, B., Arens regularity and discrete groups, Pacific J. Math. 151(1991), 217227.Google Scholar
10. Granirer, E. E., On some spaces of linear functionals on the algebras Ap(G) for locally compact groups, Colloq. Math. 52(1987), 119132.Google Scholar
11. Granirer, E. E., An application of the Radon-Nikodym property in harmonic analysis, Bull. Un. Mat. Ital. B(5)18 (1981), 663671.Google Scholar
12. Granirer, E. E. and Leinert, M., On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra B(G) and of the measure algebra M(G), Rocky Mountain J. Math. 11(1981), 459472.Google Scholar
13. Greenleaf, F. P., Invariant Means on Topological Groups, Van Nostrand, New York, 1969.Google Scholar
14. Herz, C., Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23(1973), 91123.Google Scholar
15. Hewitt, E. and K. Ross, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin, 1963.Google Scholar
16. Huff, R., The Radon-Nikodym property, Contemporary Math. 2(1980), 7589.Google Scholar
17. Lau, A. T. and Ülger, A., Some geometric properties on the Fourier and Fourier Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337(1993), 321—359.Google Scholar
18. Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces I, Springer-Verlag, New York, 1984.Google Scholar
19. Palmer, T. W., Classes of nonabelian, noncompact locally compact groups, Rocky Mountain J. Math. 8(1973), 683741.Google Scholar
20. Paterson, A. L. T., Amenability, Amer. Math. Soc, Providence, Rhode Island, 1988.Google Scholar
21. Pier, J. P., Amenable Locally Compact Groups, Wiley, New York, 1984.Google Scholar
22. Taylor, K., Geometry of Fourier algebras and locally compact groups with atomic representations, Math. Ann. 262(1983), 183190.Google Scholar
23. Ülger, A., Arens regularity sometimes implies the RNP, Pacific J. Math. 143(1990), 377399.Google Scholar