Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:56:47.706Z Has data issue: false hasContentIssue false

Almost-Bounded Holomorphic Functions with Prescribed Ambiguous Points

Published online by Cambridge University Press:  20 November 2018

G. T. Cargo*
Affiliation:
Syracuse University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f be a function mapping the open unit disk D into the extended complex plane. A point ζ on the unit circle C is called an ambiguous point of f if there exist two Jordan arcs J1 and J2, each having an endpoint at ζ and lying, except for ζ, in D, such that

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1964

References

1. Bagemihl, F., Curvilinear cluster sets of arbitrary functions, Proc. Natl. Acad. Sci. U.S., 41 (1955), 379382.Google Scholar
2. Bagemihl, F. and Seidel, W., Functions of bounded characteristic with prescribed ambiguous points, Mich. Math. J., 3 (1955-56), 7781.Google Scholar
3. Cargo, G. T., Angular and tangential limits of Blaschke products and their successive derivatives, Can. J. Math., 14 (1962), 334348.Google Scholar
4. Cargo, G. T., Radial and angular limits of meromorphic functions, Can. J. Math., 15 (1963), 471474.Google Scholar
5. Gehring, F. W., The asymptotic values for analytic functions with bounded characteristic, Quart. J. Math. Oxford Ser. (2), 9 (1958), 282289.Google Scholar
6. Golusin, G. M., Geometrische Funktionentheorie (Berlin, 1957).Google Scholar
7. Hahn, H. and Rosenthal, A., Set functions (Albuquerque, 1948).Google Scholar
8. Knopp, K., Theory and application of infinite series (2nd English éd.; New York, 1947).Google Scholar
9. Noshiro, K., Cluster sets (Berlin-Gôttingen-Heidelberg, 1960).Google Scholar
10. Priwalow, I. I., Randeigenschaften analytischer Funktionen (Berlin, 1956).Google Scholar
11. Taylor, A. E., Introduction to functional analysis (New York, 1958).Google Scholar