Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T04:25:41.443Z Has data issue: false hasContentIssue false

A 3-Dimensional Non-Abelian Cohomology of Groups With Applications to Homotopy Classification of Continuous Maps

Published online by Cambridge University Press:  20 November 2018

Manuel Bullejos
Affiliation:
Departamento de Algebra, Facultadde Ciencias, University of Granada, Granada 18075, Spain.
Antonio M. Cegarra
Affiliation:
Departamento de Algebra, Facultadde Ciencias, University of Granada, Granada 18075, Spain.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The general problem of what should be a non-abelian cohomology, what is it supposed to do, and what should be the coefficients, form a set of interesting questions which has been around for a long time. In the particular setting of groups, a comprehensible and well motivated cohomology theory has been so far stated in dimensions ≤ 2, the coefficients for being crossed modules. The main effort to define an appropriate for groups has been done by Dedecker [16] and Van Deuren [40]; they studied the obstruction to lifting non-abelian 2-cocycles and concluded with first approach for , which requires “super crossed groups” as coefficients. However, as Dedecker said “some polishing work remains necessary” for his cohomology.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

1. Barr, M., Beck, J., Homology and standard constructions, Lecture Notes in Math. 80, Springer-Verlag, 1969, 245335.Google Scholar
2. Bullejos, M., Cohomologia no abeliana, la sucesión exacta larga. Thesis. Cuadernos de Algebra 44, Publ. Univ. de Granada, 1987.Google Scholar
3. Breen, L., Bitorseur et cohomologie non-abelienne. Univ. Paris-Nord Prépublication n° 89-2, 1989.Google Scholar
4. Brown, R., Some non-abelian methods in homotopy theory and homological algebra, in Categorical Topology, Proc. Conf. Toledo, Ohio, 1983, éd. Bentley, H.L., et.al., Heldermann- Verlag, Berlin, 1984, 108-146.Google Scholar
5. Brown, R., Fibrations ofGroupoids, Journal of Algebra 15(1970), 103132.Google Scholar
6. Brown, R., Gilbert, N.D., Algebraic models of 3-types and automorphisms structure for crossed modules, Proc. London Math. Soc. (3)59(1989), 5173.Google Scholar
7. Brown, R., Higgins, P.J., Crossed complexes and non-abelian extensions. Int. Conf. on Category Theory, Gummersbach (1981), Springer L.N. in Math. 962, 1982, 3950.Google Scholar
8. Brown, R., Higgins, P.J., The classifying space of a crossed complex, U. C. N. W. Math. Preprint, 89.06, 1989.Google Scholar
9. Brown, R., Spencer, C.B., G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Ned. Akad. v. Wet. 7(1976), 293302.Google Scholar
10. Carrasco, P., Complejos hipercruzados: Cohomologia y extensiones. Thesis, Cuadernos de Algebra 6, Publ. Univ. de Granada, 1986.Google Scholar
11. Cegarra, A.M., Bullejos, M., n-cocicles non-abeliennes, C.R. Acad. Sc. Paris, (17)2981(1984), 401404.Google Scholar
12. Cegarra, A.M., Bullejos, M., Garzón, A.R., Higher dimensional obstruction theory in algebraic categories, Journal of Pure and Applied Algebra 49(1987), 43102.Google Scholar
13. Conduché, D., Modules croisés generalises de longeur 2, Journal of Pure and Applied Algebra 34(1984), 155178.Google Scholar
14. Curtis, E.B., Simplicial homotopy theory, Advances in Math. 6(1971), 107209.Google Scholar
15. Dedecker, P., Sur la n-cohomologie non-abelienne, C.R. Acad. Sc. Paris, (l)t. 260(1965), 4137–1139.Google Scholar
16. Dedecker, P., Cohomologie non-abelienne. Mimeographie, Fac. Sc. Lille, 1965.Google Scholar
17. Dedecker, P., Three dimensional non abelian cohomology for groups, Lecture Notes in Math. 92, Springer- Verlag, 1969, 3264.Google Scholar
18. Duskin, J., Simplicial methods and the interpretation of triple cohomology, Memoir A.M.S. (2,163)3(1975).Google Scholar
19. Duskin, J., Group cohomology and torsors. Mimeographed notes, 1984.Google Scholar
20. Frölich, A., Wall, C.T.C., Graded monoidal categories, Compositio Mathematica (3)28(1974), 229285.Google Scholar
21. Gerstenhaber, M., On the deformation on rings and algebras, II, Ann. of Math. 84(1964), 119.,Google Scholar
22. Glenn, P., Realization of cohomology classes in arbitrary exact categories, Journal of Pure and Applied Algebra 1(1982), 33107.Google Scholar
23. Guin-Walery, D., Loday, J.-L., Obstruction a l'excision en K-théorie algébrique, in Evanston Conference, 1980, Lecture Notes in Math. 854, Springer, Berlin-New York, 1981, 179216.Google Scholar
24. Higgins, P.J., Categories and groupoids. Van Nostrand Reinhold Math. Estudes 32, 1971.Google Scholar
25. Hill, R.O., A natural algebraic interpretation of the cohomology groups Hn(G,A), n > 3, Not. A.M.S. (A-351)25(1978).+3,+Not.+A.M.S.+(A-351)25(1978).>Google Scholar
26. Holt, D.F., An interpretation of the cohomology groups Hn(G,A), Journal of Algebra 60(1979), 307320.Google Scholar
27. Huebschmann, J., Crossed n-fold extensions of groups and cohomology, Comment. Math. Helv. 55(1980), 302314.Google Scholar
28. Kan, D., On homotopy theory and c.s.s. groups, Annals of Math. (1)68(1958), 3853.Google Scholar
29. Keune, F., Homotopical algebra and algebraic K-theory. Thesis Univ. of Amsterdam, 1972.Google Scholar
30. Lavendhomme, R., Roisin, J.R., Cohomologie non abelienne de structures algébriques, J. of Algebra 67(1980), 385414.Google Scholar
31. Loday, J.-L., Cohomologie et groupe de Steinberg relatifs, Journal of Algebra 54(1978), 178202.Google Scholar
32. Loday, J.-L., Spaces with finitely many non-trivial homotopy groups, J. of Pure and Applied Algebra 24(1982), 179202.Google Scholar
33. Lue, A. S.-T., Cohomology of groups relative to a variety, J. of Algebra 69(1981), 155174.Google Scholar
34. Mac Lane, S., Homology. Springer, 1973.Google Scholar
35. Mac Lane, S., Whitehead, J.H.C., On 3-type of a complex, Proc. Acad. USA 30(1956), 4148.Google Scholar
36. May, J.P., Simplicial objects in Algebraic Topology. Van Nostrand, 1976.Google Scholar
37. Quillen, D., Homotopical Algebra. Lecture Notes in Math. 43 , Springer-Verlag, 1967.Google Scholar
38. Ratclife, J., Crossed extensions, Trans. A.M.S. 257(1980), 7389.Google Scholar
39. Ulbrich, K.H., Group cohomology for Picard categories, Journal of Algebra 91(1984), 464498.Google Scholar
40. Van Deuren, J.P., Etude de Vobstruction au relèvement d'un cocycle non abelien. Essai d'une definition d'une 3-cohomologie non abelienne, Séminaire de mathématique pure, Univ. Catholique de Louvaine, 1978.Google Scholar
41. Whitehead, J.H.C., Combinatorial homotopy ,11, Bull. A.M.S. 55(1949), 496543.Google Scholar
42. Whitehead, G.W., Elements of homotopy theory. Springer-Verlag, 1978.Google Scholar