Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-02-05T02:35:31.394Z Has data issue: false hasContentIssue false

Relative effects of black, purple, and green multiple-funnel traps on catches of arboreal and saproxylic beetles in forest understoreys

Published online by Cambridge University Press:  03 February 2025

Daniel R. Miller*
Affiliation:
United States Department of Agriculture, Forest Service, Athens, Georgia, United States of America

Abstract

Trap colour can be an important consideration in detection programmes for arboreal and saproxylic beetles. Green and purple intercept traps are more attractive than black intercept traps to the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive species in North America. In four experiments, I tested three commercial multiple-funnel traps (green, purple, and black), baited with various lure blends, to determine the relative effects of trap colour on catches of other bark and woodboring beetles, and their associated predator species, in north–central Georgia, United States of America. I captured numerous species of Cerambycidae (Coleoptera) (n = 51), Curculionidae (Coleoptera) (n = 33), and associated predators (Coleoptera) (n = 22) across the four experiments. However, the majority of the species captured were either unaffected by trap colour or were caught in greater numbers in black and purple traps than in green traps. The two exceptions were the predators Enoclerus ichneumonus (Fabricius) (Coleoptera: Cleridae) and Pycnomerus sulcicollis LeConte (Coleoptera: Zopheridae), which were more abundant in green traps than in black traps. Purple traps performed better than black traps for the following species: Cnestus mutilatus (Blandford) (Coleoptera: Curculionidae), Cossonus corticola Say (Coleoptera: Curculionidae), Xylobiops basilaris (Say) (Coleoptera: Bostrichidae), Buprestis lineata Fabricius (Coleoptera: Buprestidae), and Namunaria guttulata (LeConte) (Coleoptera: Zopheridae).

Type
Research Paper
Creative Commons
This is a work of the US Government and is not subject to copyright protection within the United States. Published by Cambridge University Press on behalf of Entomological Society of Canada.
Copyright
© United States Of America Department of Agriculture, Forest Service, 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akkuzu, E., Şahin, M., Ugiş, A., and Bal, E. 2021. Assessment of trap colour and trap height above the ground on the capture of Ips sexdentatus and Thanasimus formicarius . Šumarski List, 145: 169174. https://doi.org/10.31298/sl.145.3-4.6.CrossRefGoogle Scholar
Allison, J.D. and Redak, R.A. 2017. The impact of trap type and design features on survey and detection of bark and woodboring beetles and their associates: a review and meta-analysis. Annual Review of Entomology, 62: 127146. https://doi.org/10.1146/annurev-ento-010715-023516.CrossRefGoogle ScholarPubMed
Cavaletto, G., Faccoli, M., Marini, L., Spaethe, J., Giannone, F., Moino, S., and Rassati, D. 2021. Exploiting trap color to improve surveys of longhorn beetles. Journal of Pest Science, 94: 871883. https://doi.org/10.1007/s10340-020-01303-w.CrossRefGoogle Scholar
Cavaletto, G., Faccoli, M., Marini, L., Spaethe, J., Magnami, G., and Rassato, D. 2020. Effect of trap color on captures of bark- and wood-boring beetles (Coleoptera; Buprestidae and Scolytinae) and associated predators. Insects, 11: 749. https://doi.org/10.3390/insects11110749.CrossRefGoogle ScholarPubMed
Chen, G., Zhang, Q.H., Wang, Y., Liu, G.T., Zhou, X., Niu, J., and Schlyter, F. 2009. Catching Ips duplicatus (Sahlberg) (Coleoptera: Scolytidae) with pheromone-baited traps: optimal trap type, colour, height and distance to infestation. Pest Management Science, 66: 213219. https://doi.org/10.1002/ps.1867.CrossRefGoogle Scholar
Crook, D.J., Francese, J.A., Rietz, M.L., Lance, D.R., Hull-Sanders, H.M., Mastro, V.C., et al. 2014. Improving detection tools for emerald ash borer (Coleoptera: Buprestidae): comparison of multifunnel traps, prism traps, and lure types at varying population densities. Journal of Economic Entomology, 107: 14961501. https://doi.org/10.1603/EC14041.CrossRefGoogle ScholarPubMed
Crook, D.J., Francese, J.A., Zylstra, K.E., Fraser, I., Sawyer, A.J., Bartels, D.W., et al. 2009. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae) to selected regions of the electromagnetic spectrum. Journal of Economic Entomology, 102: 21602169. https://doi.org/10.1603/029.102.0620.CrossRefGoogle ScholarPubMed
Crook, D.J. and Mastro, V.C. 2010. Chemical ecology of the emerald ash borer, Agrilus planipennis . Journal of Chemical Ecology, 36: 101112. https://doi.org/10.1007/s10886-009-9738-x.CrossRefGoogle ScholarPubMed
Dodds, K.J., Sweeney, J., Francese, J.A., Besana, L., and Rassati, D. 2024. Factors affecting catches of bark beetles and woodboring beetles in traps. Journal of Pest Science, 97: 17671793. https://doi.org/10.1007/s10340-024-01774-1.CrossRefGoogle Scholar
Domingue, M.J., Lelito, J.P., Myrick, A.J., Csóka, G., Szöcs, L., Imrei, Z., and Baker, T.C. 2016. Differences in spectral selectivity between stages of visually guided mating approaches in a buprestid beetle. Journal of Experimental Biology, 219: 28372843. https://doi.org/10.1242/jeb.137885.Google Scholar
Dubbel, V., Kerch, K., Sohrt, M., and Mangold, S. 1985. Influence of trap colour on the efficiency of bark beetle pheromone traps. Zeitschrift für Angewandte Entomologie, 99: 5964. https://doi.org/10.1111/j.1439-0418.1985.tb01960.x.CrossRefGoogle Scholar
Evans, A.V. 2014. Beetles of Eastern North America. Princeton University Press, Princeton, New Jersey, United States of America.CrossRefGoogle Scholar
Francese, J.A., Crook, D.J., Fraser, I., Lance, D.R., Sawyer, A.J., and Mastro, V.C. 2010. Optimization of trap color for emerald ash borer (Coleoptera: Buprestidae). Journal of Economic Entomology, 103: 12351241. https://doi.org/10.1603/EC13014.CrossRefGoogle ScholarPubMed
Francese, J.A., Fraser, I., Lance, D.R., and Mastro, V.C. 2011. Efficacy of multifunnel traps for capturing emerald ash borer (Coleoptera: Buprestidae): effect of color, glue, and other trap coatings. Journal of Economic Entomology, 104: 901908. https://doi.org/10.1603/EC11038.CrossRefGoogle ScholarPubMed
Francese, J.A., Mastro, V.C., Oliver, J.B., Lance, D.R., Youssef, N., and Lavallee, S.G. 2005. Evaluation of colors for trapping Agrilus planipennis (Coleoptera: Buprestidae). Journal of Entomological Science, 40: 9395. https://doi.org/10.18474/0749-8004-40.1.93.CrossRefGoogle Scholar
Glantz, S.A. 2005. Primer of Biostatistics. McGraw-Hill Professional, New York, New York, United States of America. 520 pp.Google Scholar
Grant, G.G., Ryall, K.L., Lyons, D.B., and Abou-Zaid, M.M. 2010. Differential response of male and female emerald ash borers (Col., Buprestidae) to (Z)-3-hexenol and manuka oil. Journal of Applied Entomology, 134: 2633. https://doi.org/10.1111/j.1439-0418.2009.01441.x.CrossRefGoogle Scholar
Hanks, L.M. 1999. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annual Review of Entomology, 44: 483505. https://doi.org/10.1146/annurev.ento.44.1.483.CrossRefGoogle ScholarPubMed
Herms, D.A. and McCullough, D.G. 2014. Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management. Annual Review of Entomology, 59: 1330. https://doi.org/10.1146/annurev-ento-011613-162051.CrossRefGoogle ScholarPubMed
Imrei, Z., Lohonyai, Z., Csóka, G., Muskovits, J., Szanyi, S., Vétek, G., et al. 2020. Improving trapping methods for buprestid beetles to enhance monitoring of native and invasive species. Forestry, 93: 254264. https://doi.org/10.1093/forestry/cpz071.CrossRefGoogle Scholar
Linsley, E.G. 1959. Ecology of Cerambycidae. Annual Review of Entomology, 4: 99138. https://doi.org/10.1146/annurev.en.04.010159.000531.CrossRefGoogle Scholar
Miller, D.R. 2006. Ethanol and (–)-α-pinene: attractant kairomones for some large wood-boring beetles in southeastern USA. Journal of Chemical Ecology, 32: 779794. https://doi.org/10.1007/s10886-009-9613-9.CrossRefGoogle ScholarPubMed
Miller, D.R. 2022. Sulcatol and fuscumol increase catches of Leptostylus asperatus and Styloleptus biustus (Coleoptera: Cerambycidae) in ethanol-baited traps. Journal of Entomological Science, 57: 443446. Available form http://meridian.allenpress.com/jes/article-pdf/57/3/443/3080526/i0749-8004-57-3-443.CrossRefGoogle Scholar
Miller, D.R., Asaro, C., Crowe, C.M., and Duerr, D.A. 2011. Bark beetle pheromones and pine volatiles: attractant kairomone lure blend for longhorn beetles (Cerambycidae) in pine stands of the southeastern United States. Journal of Economic Entomology, 104: 12451257. https://doi.org/10.1603/ec11051.CrossRefGoogle ScholarPubMed
Miller, D.R. and Crowe, C.M. 2020. Sulcatol: attractant for Monarthrum mali (Coleoptera: Curculionidae: Scolytinae), Leptostylus asperatus (Coleoptera: Cerambycidae) and associated predators. Environmental Entomology, 49: 593600. https://doi.org/10.1093/ee/nvaa042.CrossRefGoogle ScholarPubMed
Miller, D.R., Crowe, C.M., Barnes, B.F., Gandhi, K.J.K., and Duerr, D.A. 2013b. Attaching lures to multiple-funnel traps targeting saproxylic beetles (Coleoptera) in pine stands: inside or outside funnels? Journal of Economic Entomology, 106: 206214. https://doi.org/10.1603/EC12254.CrossRefGoogle ScholarPubMed
Miller, D.R., Crowe, C.M., Dodds, K.J., Galligan, L.D., de Groot, P., Hoebeke, E.R., et al. 2015a. Ipsenol, ipsdienol, ethanol, and α-pinene: trap lure blend for Cerambycidae and Buprestidae (Coleoptera) in pine forests of eastern North America. Journal of Economic Entomology, 108: 18371851. https://doi.org/10.1093/jee/tov126.CrossRefGoogle ScholarPubMed
Miller, D.R., Crowe, C.M., Mayo, P.D., Silk, P.J., and Sweeney, J.D. 2015b. Responses of Cerambycidae and other insects to traps baited with ethanol, 2,3-hexanediol, and 3,2-hydroxyketone lures in north–central Georgia. Journal of Economic Entomology, 108: 23542365. https://doi.org/10.1093/jee/tov220.CrossRefGoogle ScholarPubMed
Miller, D.R., Crowe, C.M., Mayo, P., Silk, P.J., and Sweeney, J.D. 2017. Interactions between ethanol, syn-2,3-hexanediol, 3-hydroxyhexan-2-one, and 3-hydroxyoctan-2-one lures on trap catches of hardwood longhorn beetles in southeastern United States. Journal of Economic Entomology, 110: 21192128. https://doi.org/10.1093/jee/tox188.CrossRefGoogle ScholarPubMed
Miller, D.R., Crowe, C.M., and Sweeney, J.D. 2020. Trap height affects catches of bark and woodboring beetles (Coleoptera: Curculionidae, Cerambycidae) in baited multiple-funnel traps in southeastern United States. Journal of Economic Entomology, 113: 273280. https://doi.org/10.1093/jee/toz271.Google ScholarPubMed
Miller, D.R., Dodds, K.J., Eglitis, A., Fettig, C.J., Hofstetter, R.W., Langor, D.W., et al. 2013a. Trap lure blend of pine volatiles and bark beetle pheromones for Monochamus spp. (Coleoptera: Cerambycidae) in pine forests of Canada and the United States. Journal of Economic Entomology, 106: 16841692. https://doi.org/10.1603/EC13061.CrossRefGoogle ScholarPubMed
Miller, D.R. and Duerr, D.A. 2008. Comparison or arboreal beetle catches in wet and dry collection cups with Lindgren multiple funnel traps. Journal of Economic Entomology, 101: 107113. https://doi.org/10.1093/jee/101.1.107.CrossRefGoogle ScholarPubMed
Miller, D.R., Mayo, P.D., and Sweeney, J.D. 2023. Cerambycid pheromones attract predators Temnoscheila virescens (Coleoptera: Trogossitidae), Chariessa pilosa (Coleoptera: Cleridae) and Apiomerus crassipes (Hemiptera: Reduviidae). Environmental Entomology, 52: 917. https://doi.org/10.1093/ee/nvac110.CrossRefGoogle ScholarPubMed
Miller, D.R. and Rabaglia, R.J. 2009. Ethanol and (–)-α-pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern US. Journal of Chemical Ecology, 35: 435448. https://doi.org/10.1007/s10886-009-9613-9.CrossRefGoogle ScholarPubMed
Mizell, R.F. III, and Tedders, W.L. 1999. Evaluation of trap type and color for monitoring Hylobius pales and Pachylobius picivorus in Florida. Florida Entomologist, 82: 615624. https://doi.org/10.2307/3496478.CrossRefGoogle Scholar
Monné, M.L., Monné, M.A., and Wang, Q. 2017. General morphology, classification, and biology of Cerambycidae. In Cerambycidae of the World: Biology and Pest Management. Edited by Wang, Q.. CRC Press, Taylor & Francis Group, New York, New York, United States of America. Pp. 170.Google Scholar
Pepper, W.D., Zarnoch, S.J., DeBarr, G.L., de Groot, P., and Tangren, C.D. 1997. Choosing a transformation in analyses of insect counts from contagious distributions with low means. Research Paper SRS–5. United States Department of Agriculture, Forest Service, Asheville, North Carolina, United States of America.CrossRefGoogle Scholar
Perkovich, C.L., Addesso, K.M., Basham, J.P., Fare, D.C., Youssef, N.N., and Oliver, J.B. 2022. Effects of color attributes on trap capture rates of Chrysobothris femorata (Coleoptera: Buprestidae) and related species. Environmental Entomology, 51: 737746. https://doi.org/10.1093/ee/nvac038.CrossRefGoogle ScholarPubMed
Petrice, T.R. and Haack, R.A. 2015. Comparison of different trap colours and types for capturing adult Agrilus (Coleoptera: Buprestidae) and other buprestids. Great Lakes Entomologist, 48: 4566. https://doi.org/10.22543/0090-0222.2310.Google Scholar
Poland, T.M. and McCullough, D.G. 2006. Emerald ash borer: invasion of the urban forest and threat to North America’s ash resource. Journal of Forestry, 104: 118124. https://doi.org/10.1093/jof/104.3.118.CrossRefGoogle Scholar
Poland, T.M. and McCullough, D.G. 2014. Comparison of trap types and colors for capturing emerald ash borer adults at different population densities. Environmental Entomology, 43: 157170. https://doi.org/10.1603/EN13137.CrossRefGoogle ScholarPubMed
Poland, T.M., McCullough, D.G., and Anulewicz, A.C. 2011. Evaluation of double-decker traps for emerald ash borer (Coleoptera: Buprestidae). Journal of Economic Entomology, 104: 517531. https://doi.org/10.1603/EC10254.CrossRefGoogle ScholarPubMed
Silk, P. and Ryall, K. 2015. Semiochemistry and chemical ecology of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). The Canadian Entomologist, 147: 277289. https://doi.org/10.4039/tce.2014.58.CrossRefGoogle Scholar
Strom, B.L. and Goyer, R.A. 2001. Effect of silhouette color on trap catches of Dendroctonus frontalis (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 94: 948953. https://doi.org/10.1603/0013–8746(2001)094[0948:EOSCOT]2.0.CO;2.CrossRefGoogle Scholar
Sun, J., Koski, T.M., Wickham, J.D., Baranchikov, Y.N., and Bushley, K.E. 2024. Emerald ash borer management and research: decades of damage and still expanding. Annual Review of Entomology, 69: 239258. https://doi.org/10.1146/annurev-ento-012323-032231.CrossRefGoogle ScholarPubMed
United States Department of Agriculture. 1985. Insects of Eastern Forests. Miscellaneous Publication No. 1426. United States Department of Agriculture, Forest Service, Washington, D.C., United States of America. https://doi.org/10.5962/bhl.title.65300.CrossRefGoogle Scholar