Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:49:30.206Z Has data issue: false hasContentIssue false

BOUNDS FOR GRADIENT TRAJECTORIES AND GEODESIC DIAMETER OF REAL ALGEBRAIC SETS

Published online by Cambridge University Press:  19 December 2006

D. D'ACUNTO
Affiliation:
Dipartimento di Matematica, Università degli Studi di Pisa, via Buonarroti, 2, 56127 Pisa, Italydidier.dacunto@univ-savoie.fr
K. KURDYKA
Affiliation:
Laboratoire de Mathématiques, UMR 5127 CNRS, Université de Savoie, 73376 Le Bourget du Lac cedex, Francekurdyka@univ-savoie.fr
Get access

Abstract

Let $M\subset \mathbb{R}^n$ be a connected component of an algebraic set $\varphi^{-1}(0)$, where $\varphi$ is a polynomial of degree $d$. Assume that $M$ is contained in a ball of radius $r$. We prove that the geodesic diameter of $M$ is bounded by $2r\nu(n)d(4d-5)^{n-2}$, where $\nu(n)=2{\Gamma({1}/{2})\Gamma(({n+1})/{2})}{\Gamma({n}/{2})}^{-1}$. This estimate is based on the bound $r\nu(n)d(4d-5)^{n-2}$ for the length of the gradient trajectories of a linear projection restricted to $M$.

Type
Papers
Copyright
The London Mathematical Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Partially supported by the European research network RAAG, EC contract number HPRN-CT-2001-00271.