Given a finite set S of cardinality N, the minimum number of j-subsets of S needed to cover all the r-subsets of S is called the covering number C(N, j, r). While Erdös and Hanani's conjecture that was proved by Rödl, no nontrivial upper bound for C(N, j, r) was known for finite N. In this note we obtain a nontrivial upper bound by showing that for finite N,