No CrossRef data available.
Published online by Cambridge University Press: 14 February 2025
Let $\mathcal {H}$ be the class of all analytic self-maps of the open unit disk
$\mathbb {D}$. Denote by
$H^n f(z)$ the nth-order hyperbolic derivative of
$f\in \mathcal H$ at
$z\in \mathbb {D}$. We develop a method allowing us to calculate higher-order hyperbolic derivatives in an expeditious manner. We also generalise certain classical results for variability regions of the nth derivative of bounded analytic functions. For
$z_0\in \mathbb {D}$ and
$\gamma = (\gamma _0, \gamma _1 , \ldots , \gamma _{n-1}) \in {\mathbb D}^{n}$, let
${\mathcal H} (\gamma ) = \{f \in {\mathcal H} : f (z_0) = \gamma _0,H^1f (z_0) = \gamma _1,\ldots ,H^{n-1}f (z_0) = \gamma _{n-1} \}$. We determine the variability region
$\{ f^{(n)}(z_0) : f \in {\mathcal H} (\gamma ) \}$ to prove a Schwarz–Pick lemma for the nth derivative. We apply this result to establish an nth-order Dieudonné lemma, which provides an explicit description of the variability region
$\{h^{(n)}(z_0): h\in \mathcal {H}, h(0)=0,h(z_0) =w_0, h'(z_0)=w_1,\ldots , h^{(n-1)}(z_0)=w_{n-1}\}$ for given
$z_0$,
$w_0$,
$w_1,\ldots ,w_{n-1}$. Moreover, we determine the form of all extremal functions.
This research was supported in part by the National Natural Science Foundation of China (Grant No. 12261059) and the China Scholarship Council (Grant No. 202308360150).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.