Published online by Cambridge University Press: 17 April 2009
Let H be a complex Hilbert space and let {A1, A2, …} be a uniformly bounded sequence of invertible operators on H. The operator S on l2(H) = H ⊕ H ⊕ … given by S〈x0, x1, …〉 = 〈0, A1x0, A2x1, …〉 is called the invertibly veighted shift on l2(H) with weight sequence {An }. A matricial description of the commutant of S is established and it is shown that S is unitarily equivalent to an invertibly weighted shift with positive weights. After establishing criteria for the reducibility of S the following result is proved: Let {B1, B2, …} be any sequence of operators on an infinite dimensional Hilbert space K. Then there is an operator T on K such that the lattice of reducing subspaces of T is isomorphic to the corresponding lattice of the W* algebra generated by {B1, B2, …}. Necessary and sufficient conditions are given for S to be completely reducible to scalar weighted shifts.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.