Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:43:26.584Z Has data issue: false hasContentIssue false

Theta graphs, graph decompositions and related graph labelling techniques

Published online by Cambridge University Press:  17 April 2009

Andrew Blinco
Affiliation:
Department of Mathematics, The University of Queensland, Queensland 4072, Australia, e-mail: ablinco@stvcas.cas.ilstu.edu
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. Theses
Copyright
Copyright © Australian Mathematical Society 2004

References

[1] Alspach, B. and Gavlas, H., ‘Cycle decompositions of KnI’, J. Combin. Theory Ser. B 81 2001, 7799.CrossRefGoogle Scholar
[2] El-Zanati, S.I., Vanden Eynden, C. and Punnim, N., ‘On the cyclic decomposition of complete graphs into bipartite graphs’, Australas. J. Combin. 24 2001, 209219.Google Scholar
[3] Lindner, C.C. and Rodger, C.A., ‘Decomposition into Cycles II: Cycle Systems’, in Contemporary Design Theory: A Collection of Surveys, (Dinitz, J.H. and Stinson, D.R., Editors) (J. Wiley and Son, New York, 1992), PP. 325369.Google Scholar
[4] Loerinc, B., ‘Chromatic uniqueness of the generalised θ-graph’, Discrete Math. 23 1978, 313316.CrossRefGoogle Scholar
[5] Rosa, A., ‘On certain valuations of the vertices of a graph’, in Théorie ded graphes, journées internationales d'études, Rome 1966 (Dunod, Paris, 1967), pp. 349355.Google Scholar
[6] Šajna, M., ‘Cycle decompositions III. Complete graphs and fixed length cycles’, J. Combin. Des. 10 2002, 2778.CrossRefGoogle Scholar