Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T07:46:27.588Z Has data issue: false hasContentIssue false

SINGULAR DIRECTIONS IN VEECH SURFACES

Published online by Cambridge University Press:  16 September 2022

YAN HUANG*
Affiliation:
Department of Mathematics, Henan University, Kaifeng, China

Abstract

Singular directions in a Veech surface are shown to be exactly the directions of its saddle connections.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was supported by the National Natural Science Foundation of China (Grant No. 11401167 and Grant No. 11871194).

References

Arnoux, P. and Hubert, P., ‘Fractions continues sur les surfaces de Veech’, J. Anal. Math. 81 (2000), 564.10.1007/BF02788985CrossRefGoogle Scholar
Arnoux, P. and Schmidt, T. A., ‘Veech surfaces with nonperiodic directions in the trace field’, J. Mod. Dyn. 3 (2009), 611629.Google Scholar
Cheung, Y., ‘Slowly divergent geodesics in moduli space’, Conform. Geom. Dyn. 8 (2004), 167189.10.1090/S1088-4173-04-00113-4CrossRefGoogle Scholar
Cheung, Y., ‘Hausdorff dimension of the set of singular pairs’, Ann. of Math. (2) 173 (2011), 127167.CrossRefGoogle Scholar
Cheung, Y. and Chevallier, N., ‘Hausdorff dimension of singular vectors’, Duke Math. J. 165 (2016), 22732329.10.1215/00127094-3477021CrossRefGoogle Scholar
Cheung, Y., Hubert, P. and Masur, H., ‘Dichotomy for the Hausdorff dimension of the set of nonergodic directions’, Invent. Math. 183 (2011), 337383.10.1007/s00222-010-0279-2CrossRefGoogle Scholar
Gutkin, E. and Judge, C., ‘Affine mappings of translation surfaces: geometry and arithmetic’, Duke Math. J. 103 (2000), 191213.10.1215/S0012-7094-00-10321-3CrossRefGoogle Scholar
Hubert, P. and Schmidt, T. A., ‘Diophantine approximation on Veech surfaces’, Bull. Soc. Math. France 140 (2012), 551568.10.24033/bsmf.2636CrossRefGoogle Scholar
Masur, H. and Tabachnikov, S., ‘Rational billiards and flat structures’, in: Handbook of Dynamical Systems, Vol. 1A (eds. Hasselblatt, B. and Katok, A.) (North-Holland, Amsterdam, 2002), 10151089.Google Scholar
McMullen, C. T., ‘Billiards and Teichmüller curves on Hilbert modular surfaces’, J. Amer. Math. Soc. 16 (2003), 857885.10.1090/S0894-0347-03-00432-6CrossRefGoogle Scholar
Schmidt, W. M., Diophantine Approximation, Lecture Notes in Mathematics, 785 (Springer, Berlin, 1980).Google Scholar
Smillie, J. and Weiss, B., ‘Characterizations of lattice surfaces’, Invent. Math. 180 (2010), 535557.10.1007/s00222-010-0236-0CrossRefGoogle Scholar
Veech, W. A., ‘Teichmüller curves in moduli space, Eisenstein series, and an application to triangular billiards’, Invent. Math. 97 (1989), 553583.CrossRefGoogle Scholar
Vorobets, Y. B., ‘Plane structures and billiards in rational polygons: the Veech alternative’, Uspekhi Mat. Nauk 51 (1996), 342.Google Scholar
Zorich, A., ‘Flat surfaces’, in: Frontiers in Number Theory, Physics, and Geometry I (eds. Cartier, P. E., Julia, B., Moussa, P. and Vanhove, P.) (Springer, Berlin–Heidelberg, 2006), 437583.Google Scholar