Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T14:43:14.893Z Has data issue: false hasContentIssue false

REVERSED HARDY–LITTLEWOOD–PÓLYA INEQUALITIES WITH FINITE TERMS

Published online by Cambridge University Press:  03 February 2023

HAIYAN HAN
Affiliation:
Department of Teacher Education, Maanshan Teacher’s College, Maanshan, Anhui 243041, PR China e-mail: 349818273@qq.com
YUTIAN LEI*
Affiliation:
Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, PR China

Abstract

We prove a reversed Hardy–Littlewood–Pólya inequality with finite terms. We also give the limit of the best constant.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by NSFC (No. 11871278) of China.

References

Cheng, Z. and Li, C., ‘An extended discrete Hardy–Littlewood–Sobolev inequality’, Discrete Contin. Dyn. Syst. 34 (2014), 19511959.10.3934/dcds.2014.34.1951CrossRefGoogle Scholar
Dou, J. and Zhu, M., ‘Reversed Hardy–Littlewood–Sobolev inequality’, Int. Math. Res. Not. IMRN 2015(19) (2015), 96969726.10.1093/imrn/rnu241CrossRefGoogle Scholar
Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, 2nd edn (Cambridge University Press, Cambridge, 1952).Google Scholar
Huang, G., Li, C. and Yin, X., ‘Existence of the maximizing pair for the discrete Hardy–Littlewood–Sobolev inequality’, Discrete Contin. Dyn. Syst. 35 (2015), 935942.10.3934/dcds.2015.35.935CrossRefGoogle Scholar
Lei, Y., Li, Y. and Tang, T., ‘Critical conditions and asymptotics for discrete systems of the Hardy–Littlewood–Sobolev type’, Tohoku Math. J., to appear.Google Scholar
Li, C. and Villavert, J., ‘An extension of the Hardy–Littlewood–Pólya inequality’, Acta Math. Sci. 31(6) (2011), 22852288.10.1016/S0252-9602(11)60400-1CrossRefGoogle Scholar
Lieb, E., ‘Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities’, Ann. of Math. (2) 118 (1983), 349374.10.2307/2007032CrossRefGoogle Scholar
Lieb, E., ‘Coherent states as a tool for obtaining rigorous bounds’, in: Coherent States, Past, Present and Future: Proceedings of the International Symposium, Oak Ridge, 1993 (eds. Feng, D. H., Klauder, J. R. and Strayer, M. R.) (World Scientific, Singapore, 1994), 267278.Google Scholar