Published online by Cambridge University Press: 17 April 2009
The proliferation of classifying spaces in recent years owes much to the theorem of Edgar H. Brown, Jr on the representability of homotopy functors. Since the theorem only gives a representation for functors defined on the category of spaces having the homotopy type of a CW complex, there is some interest in finding conditions under which the domain category may be enlarged. It appears that a version of the theorem holds for any small full subcategory of Htp, the category of topological spaces and homotopy classes of continuous maps, but that the resulting classifying space is generally intractable.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.