Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:50:19.907Z Has data issue: false hasContentIssue false

QUASICONFORMAL SOLUTIONS OF POISSON EQUATIONS

Published online by Cambridge University Press:  19 August 2015

PEIJIN LI*
Affiliation:
Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, PR China email wokeyi99@163.com
JIAOLONG CHEN
Affiliation:
Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, PR China email jiaolongchen@sina.com
XIANTAO WANG
Affiliation:
Department of Mathematics, Shantou University, Shantou, Guangdong 515063, PR China email xtwang@stu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main aim of this paper is to establish the Lipschitz continuity of the $(K,K^{\prime })$-quasiconformal solutions of the Poisson equation ${\rm\Delta}w=g$ in the unit disk $\mathbb{D}$.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Chen, M. and Chen, X., ‘(K, K )-quasiconformal harmonic mappings of the upper half plane onto itself’, Ann. Acad. Sci. Fenn. Math. 37 (2012), 265276.CrossRefGoogle Scholar
Duren, P., Harmonic Mappings in the Plane (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Goluzin, G. M., Geometric Function Theory (Nauka, Moscow, 1996).Google Scholar
Hörmander, L., Notions of Convexity, Progress in Mathematics, 127 (Birkhäuser, Boston, 1994).Google Scholar
Kalaj, D., ‘Quasiconformal and harmonic mappings between Jordan domains’, Math. Z. 260 (2008), 237252.CrossRefGoogle Scholar
Kalaj, D., ‘On harmonic quasiconformal self-mappings of the unit ball’, Ann. Acad. Sci. Fenn. Math. 33 (2008), 261271.Google Scholar
Kalaj, D. and Mateljević, M., ‘Inner estimate and quasiconformal harmonic maps between smooth domains’, J. Anal. Math. 100 (2006), 117132.CrossRefGoogle Scholar
Kalaj, D. and Mateljević, M., ‘On certain nonlinear elliptic PDE and quasiconfomal maps between Euclidean surfaces’, Potential Anal. 34 (2011), 1322.CrossRefGoogle Scholar
Kalaj, D. and Mateljević, M., ‘(K, K )-harmonic quasiconformal mappings’, Potential Anal. 36 (2012), 117135.CrossRefGoogle Scholar
Kalaj, D. and Pavlović, M., ‘Boundary correspondence under harmonic quasiconformal diffeomorphisms of a half-plane’, Ann. Acad. Sci. Fenn. Math. 30 (2005), 159165.Google Scholar
Kalaj, D. and Pavlović, M., ‘On quasiconformal self-mappings of the unit disk satisfying Poisson’s equation’, Trans. Amer. Math. Soc. 363 (2011), 40434061.CrossRefGoogle Scholar
Knežević, M. and Mateljević, M., ‘On the quasi-isometries of harmonic quasiconformal mappings’, J. Math. Anal. Appl. 334 (2007), 404413.CrossRefGoogle Scholar
Martio, O., ‘On harmonic quasiconformal mappings’, Ann. Acad. Sci. Fenn. Math. 425 (1968), 310.Google Scholar
Mateljević, M. and Vuorinen, M., ‘On harmonic quasiconformal quasi-isometries’, J. Inequal. Appl. (2010), Art. ID 178732.CrossRefGoogle Scholar
Pavlović, M., ‘Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk’, Ann. Acad. Sci. Fenn. Math. 27 (2002), 365372.Google Scholar
Tam, L. F. and Wan, T. Y. H., ‘Harmonic diffeomorphisms into Cartan–Hadamard surfaces with prescribed Hopf differentials’, Comm. Anal. Geom. 2 (1994), 593625.CrossRefGoogle Scholar
Tam, L. F. and Wan, T. Y. H., ‘Quasi-conformal harmonic diffeomorphism and the universal Teichmüller space’, J. Differential Geom. 42 (1995), 368410.CrossRefGoogle Scholar
Tam, L. F. and Wan, T. Y. H., ‘On quasiconformal harmonic maps’, Pacific J. Math. 182 (1998), 359383.CrossRefGoogle Scholar
Wan, T. Y. H., ‘Constant mean curvature surface, harmonic maps, and universal Teichmüller space’, J. Differential Geom. 35 (1992), 643657.CrossRefGoogle Scholar
Zygmund, A., Trigonometric Series I (Cambridge University Press, Cambridge, 1958).Google Scholar