Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T17:10:43.908Z Has data issue: false hasContentIssue false

THE PROBABILITY THAT $\lowercase {X}^{\lowercase {M}}$ AND $\lowercase {Y}^{\lowercase {N}}$ COMMUTE IN A COMPACT GROUP

Published online by Cambridge University Press:  02 August 2012

KARL H. HOFMANN*
Affiliation:
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany (email: hofmann@mathematik.tu-darmstadt.de)
FRANCESCO G. RUSSO
Affiliation:
Dieetcam, Universitá degli Studi di Palermo, Viale delle Scienze, Edificio 8, 90128, Palermo, Italy (email: francescog.russo@yahoo.com)
*
For correspondence; e-mail: hofmann@mathematik.tu-darmstadt.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a recent article [K. H. Hofmann and F. G. Russo, ‘The probability that $x$ and $y$ commute in a compact group’, Math. Proc. Cambridge Phil Soc., to appear] we calculated for a compact group $G$ the probability $d(G)$ that two randomly selected elements $x, y\in G$ satisfy $xy=yx$, and we discussed the remarkable consequences on the structure of $G$ which follow from the assumption that $d(G)$ is positive. In this note we consider two natural numbers $m$ and $n$ and the probability $d_{m,n}(G)$ that for two randomly selected elements $x, y\in G$ the relation $x^my^n=y^nx^m$ holds. The situation is more complicated whenever $n,m\gt 1$. If $G$ is a compact Lie group and if its identity component $G_0$ is abelian, then it follows readily that $d_{m,n}(G)$ is positive. We show here that the following condition suffices for the converse to hold in an arbitrary compact group $G$: for any nonopen closed subgroup $H$ of $G$, the sets $\{g\in G: g^k\in H\}$ for both $k=m$ and $k=n$ have Haar measure $0$. Indeed, we show that if a compact group $G$ satisfies this condition and if $d_{m,n}(G)\gt 0$, then the identity component of $G$is abelian.

Type
Research Article
Copyright
Copyright © 2012 Australian Mathematical Publishing Association Inc. 

References

[1]Bhattarcharjee, M., ‘The ubiquity of free subgroups in certain inverse limits of groups’, J. Algebra 172 (1995), 134146.CrossRefGoogle Scholar
[2]Epstein, D. B. A., ‘Almost all subgroups of a Lie group are free’, J. Algebra 19 (1971), 261262.CrossRefGoogle Scholar
[3]Erdős, P. & Túran, P., ‘On some problems of statistical group theory’, Acta Math. Acad. Sci. Hung 19 (1968), 413435.CrossRefGoogle Scholar
[4]Erfanian, A. & Russo, F. G., ‘Probability of mutually commuting n-tuples in some classes of compact groups’, Bull. Iranian Math. Soc. 24 (2008), 2737.Google Scholar
[5]Gartside, P. M. & Knight, R. W., ‘Ubiquity of free subgroups’, Bull. Lond. Math. Soc. 35 (2003), 624634.CrossRefGoogle Scholar
[6]Gustafson, W. H., ‘What is the probability that two group elements commute?’, Amer. Math. Monthly 80 (1973), 10311304.CrossRefGoogle Scholar
[7]Hofmann, K. H. & Morris, S. A., The Structure of Compact Groups, 2nd edn (de Gruyter, Berlin, 2006).CrossRefGoogle Scholar
[8]Hofmann, K. H. & Russo, F. G., ‘The probability that $x$ and $y$ commute in a compact group’, Math. Proc. Cambridge Phil Soc., to appear.Google Scholar
[9]Lubotzky, A., ‘Random elements of a free profinite group generate a free subgroup’, Illinois J. Math. 37 (1993), 7884.CrossRefGoogle Scholar
[10]Neumann, B. H., ‘On a problem of P. Erdős’, J. Aust. Math. Soc. Ser. A 21 (1976), 467472.CrossRefGoogle Scholar
[11]Neumann, P. M., ‘Two combinatorial problems in group theory’, Bull. Lond. Math. Soc. 21 (1989), 456458.CrossRefGoogle Scholar
[12]Niroomand, P., Rezaei, R. & Russo, F. G., ‘Commuting powers and exterior degree of finite groups’, J. Korean Math. Soc. 49 (2012), 855865.CrossRefGoogle Scholar
[13]Rezaei, R. & Russo, F. G., ‘n-th relative nilpotency degree and relative n-isoclinism’, Carpathian J. Math. 27 (2011), 123130.CrossRefGoogle Scholar