Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:48:55.083Z Has data issue: false hasContentIssue false

POSITIVE SOLUTIONS OF A SECOND-ORDER NEUMANN BOUNDARY VALUE PROBLEM WITH A PARAMETER

Published online by Cambridge University Press:  16 March 2012

YANG-WEN ZHANG
Affiliation:
Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, PR China (email: zhangyan_569088080@qq.com)
HONG-XU LI*
Affiliation:
Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, PR China (email: hoxuli@sohu.com)
*
For correspondence; e-mail: hoxuli@sohu.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we consider the Neumann boundary value problem with a parameter λ∈(0,): By using fixed point theorems in a cone, we obtain some existence, multiplicity and nonexistence results for positive solutions in terms of different values of λ. We also prove an existence and uniqueness theorem and show the continuous dependence of solutions on the parameter λ.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

Footnotes

This work is supported by the NNSF of China (Grant No. 11071042).

References

[1]Agarwal, R. P., O’Regan, D. and Staněk, S., ‘Singular Lidstone boundary value problems with given maximum values for solutions’, Nonlinear Anal. 55 (2003), 859881.CrossRefGoogle Scholar
[2]Agarwal, R. P., O’Regan, D. and Staněk, S., ‘Solvability of singular Dirichlet boundary-value problems with given maximum values for positive solutions’, Proc. Edinb. Math. Soc. 48 (2005), 119.CrossRefGoogle Scholar
[3]Chu, J., Sun, Y. and Chen, H., ‘Positive solutions of Neumann problems with singularities’, J. Math. Anal. Appl. 337 (2008), 12671272.CrossRefGoogle Scholar
[4]D’Agui, G., ‘Existence of three solutions for a Neumann boundary value problem’, Commun. SIMAI Congr. 3 (2009), 18.Google Scholar
[5]Deimling, K., Nonlinear Functional Analysis (Springer, Berlin, 1985).CrossRefGoogle Scholar
[6]Graef, J. R., Kong, K. and Wang, H., ‘Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem’, J. Differential Equations 245 (2008), 11851197.CrossRefGoogle Scholar
[7]Li, Z., ‘Positive solutions of singular second-order Neumann boundary value problem’, Ann. Differential Equations 21 (2005), 321326.Google Scholar
[8]Li, Z., ‘Existence of positive solutions of superlinear second-order Neumann boundary value problem’, Nonl. Anal. 72 (2010), 32163221.CrossRefGoogle Scholar
[9]Li, F. and Liang, Z., ‘Existence of positive periodic solutions to nonlinear second order differential equations’, Appl. Math. Lett. 18 (2005), 12561264.CrossRefGoogle Scholar
[10]Li, W. and Liu, X., ‘Eigenvalue problems for second-order nonlinear dynamic equations on time scales’, J. Math. Anal. Appl. 318 (2006), 578592.CrossRefGoogle Scholar
[11]Liu, X. and Li, W., ‘Existence and uniqueness of positive periodic solutions of functional differential equations’, J. Math. Anal. Appl. 293 (2004), 2839.CrossRefGoogle Scholar
[12]Sun, J. and Li, W., ‘Multiple positive solutions to second order Neumann boundary value problems’, Appl. Math. Comput. 146 (2003), 187194.Google Scholar
[13]Sun, J., Li, W. and Cheng, S. S., ‘Three positive solutions for second-order Neumann boundary value problems’, Appl. Math. Lett. 17 (2004), 10791084.CrossRefGoogle Scholar
[14]Tang, C., ‘Some existence theorems for the sublinear Neumann boundary value problem’, Nonlinear Anal. 48 (2002), 10031011.CrossRefGoogle Scholar
[15]Wang, H., ‘On the number of positive solutions of nonlinear systems’, J. Math. Anal. Appl. 281 (2003), 287306.CrossRefGoogle Scholar
[16]Wang, H., ‘Positive periodic solutions of singular systems with a parameter’, J. Differential Equations 249 (2010), 29863002.CrossRefGoogle Scholar
[17]Wang, F., Cui, Y. and Zhang, F., ‘A singular nonlinear second-order Neumann boundary value problem with positive solutions’, Thai J. Math. 7 (2009), 243257.Google Scholar
[18]Yao, Q., ‘Multiple positive solutions to a singular Neumann boundary value problem’, J. Univ. Sci. Technol. China 36 (2006), 10821088.Google Scholar
[19]Yao, Q., ‘Successively iterative method of nonlinear Neumann boundary value problems’, Appl. Math. Comput. 217 (2010), 23012306.Google Scholar
[20]Zhang, Z. and Wang, J., ‘On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations’, J. Math. Anal. Appl. 281 (2003), 99107.CrossRefGoogle Scholar