Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T23:06:27.511Z Has data issue: false hasContentIssue false

Poincaré duality pairs of dimensiond three

Published online by Cambridge University Press:  17 April 2009

Beatrice Bleile
Affiliation:
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. Theses
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Browder, W., Surgery on simply connected manifolds (Springer-Verlag, Berlin, Heidelberg, New York, 1972).CrossRefGoogle Scholar
[2]Crisp, J., ‘The decomposition of 3-dimensional Poincaré complexes’, Comment. Math. Helv. 75 (2000), 232246.CrossRefGoogle Scholar
[3]Eckmann, B. and Linnell, P., ‘Poincaré duality groups of dimension two, II’, Comment. Math. Helv. 58 (1983), 111114.CrossRefGoogle Scholar
[4]Eckmann, B. and Müller, H., ‘Poincaré duality groups of dimension two’, Comment. Math. Helv. 55 (1980), 510520.CrossRefGoogle Scholar
[5]Gitler, S. and Stasheff, J.D., ‘The first exotic class of BF’, Topology 4 (1965), 257266.CrossRefGoogle Scholar
[6]Hendriks, H., ‘Obstruction theory in 3-dimensional topology: An extension theorem’, J. London Math. Soc. (2) 16 (1977), 160164.CrossRefGoogle Scholar
[7]Hillman, J.A., ‘On 3-dimensional Poincaré duality complexes and 2- knot groups’, Math. Proc. Camb. Phil. Soc. 114 (1993), 215218.CrossRefGoogle Scholar
[8]Hillman, J.A., ‘An indecomposable PD 3-complex whose fundamental group has infinitely many ends’, Math. Proc. Camb. Phil. Soc 138 (2005), 5557.CrossRefGoogle Scholar
[9]Hilton, P.J., Homotopy theory and duality (Gordon and Breach, New York, London, Paris, 1965).Google Scholar
[10]Kirby, R.C. and Siebenmann, L.C., Foundational essays on topological manifolds, smoothings and triangulations, Annals of Mathematics Studies 88 (Princeton University Press, Princeton, N.J., 1977).CrossRefGoogle Scholar
[11]Swan, R.G., ‘Periodic resolutions for finite groups’, Ann. of Math. 72 (1960), 267291.CrossRefGoogle Scholar
[12]Turaev, V.G., ‘Three dimensional Poincaré complexes: Homotopy classification and splitting’, Math. Sb. 180 (1989), 809830.Google Scholar
[13]Wall, C.T.C., ‘Poincaré complexes: I’, Ann. of Math. (2) 86 (1967), 213245.CrossRefGoogle Scholar
[14]Wall, C.T.C., Surgery on compact manifolds (Academic Press, London, New York, 1970).Google Scholar