Hostname: page-component-7dd5485656-j7khd Total loading time: 0 Render date: 2025-10-31T14:05:39.540Z Has data issue: false hasContentIssue false

PERFECT CODES IN THE HOMOGENEOUS METRIC

Published online by Cambridge University Press:  30 October 2025

JINJIAO XU
Affiliation:
Key Laboratory of Intelligent Computing Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University , Hefei 230601, PR China e-mail: xu_jjiao@163.com
MINJIA SHI*
Affiliation:
Key Laboratory of Intelligent Computing Signal Processing, Ministry of Education, School of Mathematical Sciences, Anhui University , Hefei 230601, PR China
PATRICK SOLÉ
Affiliation:
I2M (Institut de Mathématiques de Marseille), Aix-Marseille Univ , CNRS, Centrale Marseille, Marseilles, France e-mail: sole@enst.fr

Abstract

We study perfect codes in the homogeneous metric over the ring $\mathbb {Z}_{{2}^k}, k\ge 2$. We derive arithmetic nonexistence results from Diophantine equations on the parameters resulting from the sphere packing conditions, and a Lloyd theorem based on the theory of weakly metric association schemes.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This research is supported by National Natural Science Foundation of China (Grant no. 12471490).

References

Bariffi, J., Cavicchioni, G. and Weger, V., ‘The existence of MacWilliams-type identities for the Lee, homogeneous and subfield metric’, Preprint, 2024, arXiv:2409.11926.Google Scholar
Brouwer, A. E., Cohen, A. M. and Neumaier, A., Distance-Regular Graphs (Springer-Verlag, Berlin, 1989).CrossRefGoogle Scholar
Carlet, C., ‘ ${\mathbb{Z}}_{2^k}$ -linear codes’, IEEE Trans. Inform. Theory 44(4) (1998), 15431547.10.1109/18.681328CrossRefGoogle Scholar
Constantinescu, I. and Heise, W., ‘A metric for codes over residue class rings’, Probl. Inf. Transm. 33(3) (1997), 2228.Google Scholar
Cvetkovic, D. M. and van Lint, J. H., ‘An elementary proof of Lloyd’s theorem’, Indag. Math. (N.S.) 80(1) (1977), 610.CrossRefGoogle Scholar
Delsarte, P., ‘An algebraic approach to the association schemes of coding theory’, Philips Res. Rep. Suppl. 10 (1973), 197.Google Scholar
Hammons, A. R., Kumar, P. V., Calderbank, A. R., Sloane, N. J. A. and Solé, P., ‘The ${\mathbb{Z}}_4$ -linearity of Kerdock, Preparata, Goethals and related codes’, IEEE Trans. Inform. Theory 40(2) (1994), 301319.CrossRefGoogle Scholar
Lucas, É., ‘Sur les congruences des nombres eulériens et des coefficients différentiels des functions trigonométriques suivant un module premier’, Bull. Soc. Math. France 6 (1878), 4954.10.24033/bsmf.127CrossRefGoogle Scholar
Nechaev, A. A. and Khonol’d, T., ‘Weighted modules and representations of codes’, Probl. Inf. Transm. 35(3) (1999), 1839.Google Scholar
Shi, M., Alahmadi, A. and Solé, P., Codes and Rings: Theory and Practice (Academic Press, Amsterdam, 2017).Google Scholar
Şiap, I., Özen, M. and Şiap, V., ‘On the existence of perfect linear codes over ${\mathbb{Z}}_{2^l}$ with respect to homogeneous metric’, Arab. J. Sci. Eng. 38(8) (2013), 21892192.CrossRefGoogle Scholar
Şiap, V. and Özen, M., ‘On the existence of perfect linear codes over ${\mathbb{Z}}_4$ with respect to homogeneous weight’, Appl. Math. Sci. 6(41) (2012), 20052011.Google Scholar
Solé, P., ‘A Lloyd theorem in weakly metric association schemes’, European J. Combin. 10(2) (1989), 189196.CrossRefGoogle Scholar
Zinoviev, V. A. and Ericson, T., ‘Fourier-invariant pairs of partitions of finite abelian groups and association schemes’, Probl. Inf. Transm. 45(3) (2009), 221231.CrossRefGoogle Scholar