Hostname: page-component-7f64f4797f-d7bbv Total loading time: 0 Render date: 2025-11-05T08:03:05.267Z Has data issue: false hasContentIssue false

ON THE LARGEST PRIME DIVISOR OF n! + 1

Published online by Cambridge University Press:  03 November 2025

LI LAI*
Affiliation:
Xiamen University , Fujian, China
Rights & Permissions [Opens in a new window]

Abstract

For an integer $m>1$, we denote by $P(m)$ the largest prime divisor of m. We improve a result of Stewart [‘On the greatest and least prime factors of ${n!}+1$, II’, Publ. Math. Debrecen 65(3–4) (2004), 461–480] by showing that $\limsup _{n \rightarrow \infty } P({n!}+1)/n \geqslant 1+9\log 2$. More generally, for any nonzero polynomial $f(X)$ with integer coefficients, we show that $\limsup _{n \rightarrow \infty } P({n!}+f(n))/n \geqslant 1+9\log 2$. This improves a result of Luca and Shparlinski [‘Prime divisors of shifted factorials’, Bull. Lond. Math. Soc. 37(6) (2005), 809–817]. These improvements stem from an additional combinatorial idea that builds upon the works mentioned above.

Information

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

1 Introduction

Let n be a positive integer. We are interested in the prime divisors of ${n!}+1$ . A folklore conjecture predicts that there exist infinitely many positive integers n such that ${n!}+1$ is a prime number. This conjecture remains wildly open, so we turn our attention to finding lower bounds for the largest prime divisor of ${n!}+1$ .

We denote by $P(m)$ the largest prime divisor of an integer $m> 1$ . Clearly, $P({n!}+1)> n$ . If p is a prime divisor of ${n!}+1$ for an odd integer $n \geqslant 3$ , then Wilson’s theorem implies that p also divides ${(p-1-n)!}+1$ . From this, one can easily show that $\limsup _{n \rightarrow \infty } P({n!}+1)/n \geqslant 2$ .

As far as the author knows, the first nontrivial result was obtained by Erdős and Stewart [Reference Erdős and Stewart1] in 1976. They showed that $\limsup _{n \rightarrow \infty } P({n!}+1)/n> 2$ . This problem seemed to be forgotten until this century. In 2003, Luca and Shparlinski [Reference Luca and Shparlinski3] proved that $\limsup _{n \rightarrow \infty } {P({n!}+f(n))}/{n} \geqslant {5}/{2}$ for any polynomial $f(X) \in \mathbb {Z}[X] \setminus \{ 0 \}$ . Later, Stewart [Reference Stewart9] showed that $\limsup _{n \rightarrow \infty } {P({n!}+1)}/{n} \geqslant {11}/{2}$ . Moreover, Stewart showed that the set of positive integers n for which $P({n!}+1)> (11/2-\varepsilon )n$ has positive lower asymptotic density for any $\varepsilon> 0$ . Recall that for a set A of positive integers, the lower asymptotic density of A is defined by $\liminf _{m \rightarrow \infty } \#(A \cap \{1,2,\ldots ,m\})/m$ , where we use $\# S$ to denote the cardinality of a set S.

However, in 2002, Murty and Wong [Reference Murty, Wong, Bennett, Berndt, Boston, Hildebrand, Diamond and Philipp6] showed that if the $abc$ conjecture is true, then $P({n!}+1)> (1+o(1))n\log n \quad \text {as}\ n \to \infty $ . Unconditionally, Luca and Shparlinski [Reference Luca and Shparlinski3] showed that $P({n!}+1)> n + ( {1}/{4} + o(1) )\log n$ as $n \to \infty $ , which sharpens a result from [Reference Erdős and Stewart1].

In this paper, we simultaneously improve the constants $5/2$ and $11/2$ from [Reference Luca and Shparlinski3, Reference Stewart9]. Our result is as follows.

Theorem 1.1. Let $f(X) \in \mathbb {Z}[X]\setminus \{ 0 \}$ . Then,

$$ \begin{align*} \limsup_{n \rightarrow \infty} \frac{P({n!}+f(n))}{n} \geqslant 1+9\log2 \approx 7.238. \end{align*} $$

Moreover, for any $\varepsilon> 0$ , the set of positive integers n for which ${n!}+f(n)>1$ and $P({n!}+f(n))>(1+9\log 2 - \varepsilon )n$ has positive lower asymptotic density.

We follow most of the arguments from Luca and Shparlinski [Reference Luca and Shparlinski3] and Stewart [Reference Stewart9]. The new ingredient in this paper is Lemma 2.7. Roughly speaking, for a prime number p and distinct positive integers $n_1,n_2,\ldots ,n_t<p$ , we can bound

$$ \begin{align*} \log p \sum_{ct \leqslant t' \leqslant t} \min_{1 \leqslant k \leqslant t'} \{ \operatorname{ord}_{p}(n_{k}!+f(n_k)) \} \end{align*} $$

from above, where $c \approx 1/2$ is a constant and $\operatorname {ord}_p(m)$ is the p-adic order of an integer m. This upper bound gains a multiplicative constant compared with bounding

$$ \begin{align*} (\log p)\cdot\min_{1 \leqslant k \leqslant t'} \{ \operatorname{ord}_{p}(n_{k}!+f(n_k)) \} \end{align*} $$

individually for each $t'$ , as done in [Reference Luca and Shparlinski3, Reference Stewart9].

Our new ingredient can be applied to some other related problems. For example, in [Reference Stewart9], Stewart proved that

$$ \begin{align*} \liminf_{\substack{n \rightarrow \infty\\ n \text{ odd}}} \frac{p({n!}+1)}{n} \leqslant \frac{\sqrt{145}-1}{8}, \end{align*} $$

where $p(m)$ denotes the least prime divisor of an integer $m> 1$ . By incorporating our new ingredient, the constant $(\sqrt {145}-1)/8 \approx 1.380$ can be improved to

$$ \begin{align*} \frac{\sqrt{81(\log 2)^2 + 16} - 9\log 2 + 4}{4} \approx 1.293. \end{align*} $$

(Note that, unlike Theorem 1.1, our methods cannot prove that the lower asymptotic density of the set $\{n: p({n!}+1)<(c-\varepsilon )n\}$ is positive.) In [Reference Luca and Shparlinski4], Luca and Shparlinski showed that

$$ \begin{align*} \limsup_{n \rightarrow \infty} \frac{P({n!}+2^n-1)}{n} \geqslant \frac{2\pi^2+3}{18}. \end{align*} $$

The constant $(2\pi ^2+3)/18 \approx 1.263$ can be improved to

$$ \begin{align*} 1+\frac{2\pi^2-15}{6}\log\frac{3}{2} \approx 1.320. \end{align*} $$

This paper is organised as follows. In Section 2, we prove several lemmas. Only Lemma 2.7 is new, while the other lemmas are slight modifications of those in [Reference Luca and Shparlinski3, Reference Stewart9]. In Section 3, we prove Theorem 1.1.

2 Preliminary lemmas and notation

We need the following two lemmas from Luca and Shparlinski [Reference Luca and Shparlinski3].

Lemma 2.1. Let $f(X) \in \mathbb {Z}[X] \setminus \{ 0 \}$ . Then, there exists a positive integer $n_0 \geqslant 2$ , which depends only on f, such that the equation

$$ \begin{align*} f(n) \prod_{i=1}^{k} (n+i) - f(n+k) = 0 \end{align*} $$

does not have any integer solution $(n,k)$ with $n \geqslant n_0$ and $k \geqslant 1$ . Moreover, for any integer $n \geqslant n_0$ , we have ${n!}+f(n)> 1$ and $f(n) \neq 0$ .

Proof. If we delete the last sentence, this corresponds to [Reference Luca and Shparlinski3, Lemma 3]. However, adding the last sentence is trivial.

Lemma 2.2 [Reference Luca and Shparlinski3, Lemma 4]

Let $f(X) \in \mathbb {Z}[X] \setminus \{ 0 \}$ . Then, there exists a positive constant $C_0$ , which depends only on f, such that for any prime number p and any interval ${J \subset [1,p)}$ with length $|J| \geqslant 1$ ,

$$ \begin{align*} \# \{ n \in \mathbb{Z}_{>0} \cap J \mid p \text{ divides } {n!}+f(n) \} \leqslant C_0|J|^{{2}/{3}}. \end{align*} $$

From now on, we fix a polynomial $f(X) \in \mathbb {Z}[X]\setminus \{ 0 \}$ and let $n_0$ be the constant as stated in Lemma 2.1. We also fix an $\varepsilon _0 \in (0,1/100)$ .

We use the Vinogradov symbol $\ll $ as well as the Landau symbols O and o. Throughout this paper, all the constants implied by $\ll $ or O depend at most on f and $\varepsilon _0$ (in particular, these implicit constants do not depend on x, a parameter we introduce later). For convenience, we specify some constants; one of them is $C_1$ . We fix a nonnegative integer $C_1$ such that

(2.1) $$ \begin{align} |f(n)| \leqslant n^{C_1} \text{ for any integer } n \geqslant 2. \end{align} $$

Let $\lambda := 1+9\log 2 - 100\varepsilon _0$ . To prove Theorem 1.1, we will show that the set

$$ \begin{align*} B(\lambda) := \{ n \in \mathbb{Z}_{\geqslant n_0} \mid P({n!}+f(n))> \lambda n \} \end{align*} $$

has lower asymptotic density $\geqslant \varepsilon _0$ . In fact, we will show that for any sufficiently large integer x,

$$ \begin{align*} |B(\lambda) \cap \{1,2,\ldots,x\}| \geqslant \varepsilon_0 x. \end{align*} $$

We argue by contradiction. In the following, we fix a sufficiently large integer x and suppose that $|B(\lambda ) \cap \{1,2,\ldots ,x\}| < \varepsilon _0 x$ . Define

(2.2) $$ \begin{align} Z := \prod_{\substack{n=\lceil \varepsilon_0 x \rceil \\ n \notin B(\lambda)}}^{x} ({n!}+f(n)). \end{align} $$

(We assume x is large enough so that $\varepsilon _0 x> n_0$ . For $n \geqslant \varepsilon _0 x$ , we have ${n!}+f(n)>1$ and $f(n) \neq 0$ .) By Stirling’s formula, $\log ({n!}+f(n)) = n\log n +O(n)$ , so that

$$ \begin{align*} \log Z> \bigg( \kern-2pt\sum_{n = \lceil \varepsilon_0 x \rceil}^{x } ( n\log n + O(n) ) \bigg) - \varepsilon_0 x ( x\log x + O(x) ). \end{align*} $$

Therefore, under the assumption that x is sufficiently large,

(2.3) $$ \begin{align} \log Z> ( \tfrac{1}{2} - 2\varepsilon_0 ) x^2 \log x. \end{align} $$

We denote by $|I|$ the length of an interval I. The following notation will be frequently used in this paper.

Definition 2.3. Let $n_1,n_2,\ldots ,n_t$ be distinct positive integers ( $t \geqslant 2$ ). We define $\mathcal {I}(n_1,n_2,\ldots ,n_t)$ to be the following set of intervals. If $\sigma $ is the unique permutation on the index set $\{1,2,\ldots ,t\}$ such that $n_{\sigma (1)} < n_{\sigma (2)} < \cdots < n_{\sigma (t)}$ , then

$$ \begin{align*} \mathcal{I}(n_1,n_2,\ldots,n_t) := \{ I \mid I = (n_{\sigma(i)},n_{\sigma(i+1)}] \text{ for some } i \in \{ 1,2,\ldots,t-1 \} \}. \end{align*} $$

We also define

$$ \begin{align*} \mathcal{I}_{\text{good}}(n_1,n_2,\ldots,n_t) &:= \{ I \in \mathcal{I}(n_1,n_2,\ldots,n_t) \mid |I| \leqslant {x^{0.99}}/{t}\\ &\!\qquad \text{or } I \text{ contains at least } 2C_1+1 \text{ prime numbers} \}. \end{align*} $$

Note that $\mathcal {I}(n_1,n_2,\ldots ,n_t)$ is determined solely by the set $\{ n_1,n_2,\ldots ,n_t \}$ . However, $\mathcal {I}_{\text {good}}(n_1,n_2,\ldots ,n_t)$ depends also on t, x and the constant $C_1$ from (2.1). Clearly, $\# \mathcal {I}(n_1,n_2,\ldots ,n_t) = t-1$ and the intervals in $\mathcal {I}(n_1,n_2,\ldots ,n_t)$ are disjoint. It is straightforward to check from the definition that

$$ \begin{align*} \# ( \mathcal{I}(n_1,n_2,\ldots,n_t) \setminus \mathcal{I}(n_1,n_2,\ldots,n_{t-1}) ) \leqslant 2 \end{align*} $$

for any integer $t \geqslant 3$ and any t distinct positive integers $n_1,\ldots ,n_t$ . This fact will be used later in Lemma 2.7.

The following lemma is a variation of an observation in [Reference Stewart9].

Lemma 2.4. Suppose that x is larger than some constant depending at most on f and $\varepsilon _0$ . Let t and $t'$ be integers such that $2 \leqslant t' \leqslant t$ . Let p be a prime number and $n_1,n_2,\ldots ,n_t$ be distinct positive integers in the interval $[\varepsilon _0 x,\min \{p-1,x\}]$ . Then, for any two distinct intervals $I_1, I_2 \in \mathcal {I}(n_1,n_2,\ldots ,n_{t'}) \cap \mathcal {I}_{\mathrm {good}}(n_1,n_2,\ldots ,n_t)$ with ${|I_2| \geqslant |I_1|}$ ,

(2.4) $$ \begin{align} (\log p) \cdot \min_{1 \leqslant k \leqslant t'}\{\operatorname{ord}_{p}(n_k! + f(n_k))\} \leqslant |I_1|\hspace{-1.2pt}\log\bigg( \frac{ex}{|I_1|} \bigg) + \bigg(|I_2|-|I_1| + \frac{x^{0.99}}{t} + O(1)\bigg)\log x. \end{align} $$

Proof. There exist indices $i_1,j_1,i_2,j_2 \leqslant t'$ such that $I_1 = (n_{i_1},n_{j_1}]$ and ${I}_2= (n_{i_2},n_{j_2}]$ . We denote

$$ \begin{align*} D = p^{\min_{1 \leqslant k \leqslant t'}\{\operatorname{ord}_{p}(n_k! + f(n_k))\}}. \end{align*} $$

From $D \mid (n_{i_1}!+f(n_{i_1}))$ and $D \mid (n_{j_1}!+f(n_{j_1}))$ , we obtain

(2.5) $$ \begin{align} D~ \bigg|~ \bigg( f(n_{i_1})\prod_{k=1}^{n_{j_1}-n_{i_1}}(n_{i_1}+k) - f(n_{j_1}) \bigg). \end{align} $$

Since $n_{j_1}>n_{i_1} \geqslant \varepsilon _0x > n_0$ , by Lemma 2.1,

$$ \begin{align*} f(n_{i_1})\prod_{k=1}^{n_{j_1}-n_{i_1}}(n_{i_1}+k) - f(n_{j_1}) \neq 0. \end{align*} $$

Hence, we deduce from (2.5) and (2.1) that

$$ \begin{align*} D \leqslant \bigg| f(n_{i_1})\prod_{k=1}^{n_{j_1}-n_{i_1}}(n_{i_1}+k) - f(n_{j_1}) \bigg| \leqslant 2x^{C_1+|I_1|}. \end{align*} $$

If $|I_1| \leqslant x^{0.99}/t$ , then $\log D \leqslant (x^{0.99}/t + O(1))\log x$ and (2.4) is true. Similarly,

(2.6) $$ \begin{align} D ~ \bigg|~ \bigg( f(n_{i_2})\prod_{k=1}^{n_{j_2}-n_{i_2}}(n_{i_2}+k) - f(n_{j_2}) \bigg) \neq 0. \end{align} $$

If $|I_2| \leqslant x^{0.99}/t$ , then (2.4) is true.

It remains to consider the case that both $|I_1|$ and $|I_2|$ are greater than $x^{0.99}/t$ . Then, by the definition of $\mathcal {I}_{\text {good}}(n_1,n_2,\ldots ,n_t)$ , there exist distinct primes $q_1,q_2,\ldots ,q_{2C_1+1}$ in the interval $I_1$ , and there exist distinct primes $q_1^{\prime },q_2^{\prime },\ldots ,q_{2C_1+1}^{\prime }$ in the interval $I_2$ . By (2.5) and (2.6),

(2.7) $$ \begin{align} D~ \bigg|~ \bigg( f(n_{i_1})f(n_{j_2})\prod_{k=1}^{n_{j_1}-n_{i_1}}(n_{i_1}+k) - f(n_{i_2})f(n_{j_1})\prod_{k'=1}^{n_{j_2}-n_{i_2}}(n_{i_2}+k') \bigg). \end{align} $$

We claim that

(2.8) $$ \begin{align} f(n_{i_1})f(n_{j_2})\prod_{k=1}^{n_{j_1}-n_{i_1}}(n_{i_1}+k) - f(n_{i_2})f(n_{j_1})\prod_{k'=1}^{n_{j_2}-n_{i_2}}(n_{i_2}+k') \neq 0. \end{align} $$

In fact, since $I_1 = (n_{i_1},n_{j_1}]$ and $I_2= (n_{i_2},n_{j_2}]$ are disjoint, there are only two cases. The first case is that $n_{i_1}<n_{j_1} \leqslant n_{i_2}<n_{j_2}$ . If (2.8) does not hold, then we deduce that $q_1^{\prime }q_2^{\prime } \cdots q_{2C_1+1}^{\prime } \mid f(n_{i_1})f(n_{j_2})$ . Since $n_{i_1},n_{j_1},n_{i_2},n_{j_2} \geqslant \varepsilon _0 x> n_0$ , we have ${f(n_{i_1})f(n_{j_2}) \neq 0}$ . Thus, $q_1^{\prime }q_2^{\prime } \cdots q_{2C_1+1}^{\prime } \leqslant |f(n_{i_1})f(n_{j_2})| \leqslant x^{2C_1}$ . However, $q_1^{\prime }q_2^{\prime } \cdots q_{2C_1+1}^{\prime } \geqslant (\varepsilon _0 x)^{2C_1+1}$ , which leads to a contradiction because x is large. The second case is that $n_{i_2}<n_{j_2} \leqslant n_{i_1}<n_{j_1}$ . If (2.8) does not hold in this case, we will arrive at a similar contradiction from $q_1q_2 \cdots q_{2C_1+1} \mid f(n_{i_2})f(n_{j_1})$ . Hence, the claim (2.8) holds.

Since $|I_2| = n_{j_2} - n_{i_2} \geqslant |I_1| = n_{j_1}-n_{i_1}$ , the factorial $(n_{j_1}-n_{i_1})!$ is a divisor of the right-hand side of (2.7). Since D is a power of the prime p and $n_{i_1},n_{j_1},n_{i_2},n_{j_2} < p$ , the factorial $(n_{j_1}-n_{i_1})!$ is coprime to D. Thus,

(2.9) $$ \begin{align} D~ \bigg|~ \frac{1}{(n_{j_1}-n_{i_1})!} \bigg( f(n_{i_1})f(n_{j_2})\prod_{k=1}^{n_{j_1}-n_{i_1}}(n_{i_1}+k) - f(n_{i_2})f(n_{j_1})\prod_{k'=1}^{n_{j_2}-n_{i_2}}(n_{i_2}+k') \bigg). \end{align} $$

Noting that $m! \geqslant (m/e)^m$ for any positive integer m and

$$ \begin{align*} \bigg| f(n_{i_1})f(n_{j_2})\prod_{k=1}^{n_{j_1}-n_{i_1}}(n_{i_1}+k) - f(n_{i_2})f(n_{j_1})\prod_{k'=1}^{n_{j_2}-n_{i_2}}(n_{i_2}+k') \bigg| \leqslant 2x^{2C_1 + |I_2|}, \end{align*} $$

we deduce from (2.9) and (2.8) that

$$ \begin{align*} D \leqslant 2x^{|I_2|-|I_1|+2C_1} \cdot \bigg( \frac{ex}{|I_1|} \bigg)^{|I_1|}, \end{align*} $$

which completes the proof of (2.4).

We require the intervals in $\mathcal {I}_{\text {good}}(n_1,n_2,\ldots ,n_t)$ to contain at least $2C_1+1$ prime numbers solely to ensure that the left-hand side of (2.8) is nonzero. The following result of Heath-Brown will help us demonstrate that most intervals in $\mathcal {I}(n_1,n_2,\ldots ,n_t)$ are ‘good’ (when $t \leqslant C_0x^{2/3}$ ). This is the only nonelementary result that we need in this paper.

Lemma 2.5 (Heath-Brown, [Reference Heath-Brown2, Theorem 1])

Let $2=p_1<p_2<\cdots $ denote the sequence of prime numbers. For any $\varepsilon> 0$ , there exists a constant $c_{\varepsilon }$ depending only on $\varepsilon $ , such that for any $y \geqslant 2$ ,

$$ \begin{align*} \sum_{p_k \leqslant y} (p_{k+1}-p_k)^2 \leqslant c_{\varepsilon} y^{{23}/{18}+\varepsilon}. \end{align*} $$

The exponent $23/18$ in Lemma 2.5 is less than $4/3$ , which is sufficient for us to demonstrate that most intervals in $\mathcal {I}(n_1,n_2,\ldots ,n_t)$ are ‘good’ when $t \leqslant C_0x^{2/3}$ , as stated below in Corollary 2.6. The exponent $23/18$ in Lemma 2.5 has been improved to $5/4$ by Peck [Reference Peck7] (see also Maynard [Reference Maynard5]) and to $123/100$ by Stadlmann [Reference Stadlmann8]. However, these improvements to Lemma 2.5 do not yield any enhancement to Theorem 1.1.

Corollary 2.6. Suppose that x is larger than some constant depending at most on f and $\varepsilon _0$ . Let t be an integer such that $2 \leqslant t \leqslant C_0 x^{2/3}$ , where $C_0$ is the constant in Lemma 2.2. Let $n_1,n_2,\ldots ,n_t$ be any distinct integers in the interval $[\varepsilon _0 x, x]$ . Then,

$$ \begin{align*} \# \mathcal{I}_{\mathrm{good}}(n_1,n_2,\ldots,n_t) \geqslant t-2t^{0.99}. \end{align*} $$

Proof. Since x is large, we have $t \leqslant C_0x^{{2}/{3}} < x^{{2}/{3} + 0.01} < x$ . By Lemma 2.5, there exists an absolute constant C such that

(2.10) $$ \begin{align} \sum_{p_k \leqslant y} (p_{k+1}-p_k)^2 \leqslant Cy^{{23}/{18}+0.001} \quad\text{for any } y \geqslant 2. \end{align} $$

(Recall that we denote by $2=p_1<p_2<\cdots $ the sequence of prime numbers.)

For any interval $I \in \mathcal {I}(n_1,n_2,\ldots ,n_t) \setminus \mathcal {I}_{\text {good}}(n_1,n_2,\ldots ,n_t)$ , we have $|I|> {x^{0.99}}/{t}$ and I contains at most $2C_1$ prime numbers. There are indices $i,j$ such that $I = (n_i,n_j]$ . Let $p_{k+1}$ be the least prime number such that $p_{k+1}> n_j$ . Then, we have $p_k \leqslant n_j \leqslant x$ and $p_{k+1}> n_j \geqslant \varepsilon _0 x$ . Note that $k> 2C_1$ since x is large ( $x>p_{2C_1+1}/\varepsilon _0$ ). Given that I contains at most $2C_1$ prime numbers, we must have $p_{k-2C_1} \leqslant n_i$ , so $I \subset (p_{k-2C_1},p_{k+1})$ .

Let

$$ \begin{align*}m = \# ( \mathcal{I}(n_1,n_2,\ldots,n_t) \setminus \mathcal{I}_{\text{good}}(n_1,n_2,\ldots,n_t) ).\end{align*} $$

For any index k such that $k>2C_1$ and $p_k \leqslant x$ , we denote by $m_k$ the number of intervals in $\mathcal {I}(n_1,n_2,\ldots ,n_t) \setminus \mathcal {I}_{\text {good}}(n_1,n_2,\ldots ,n_t)$ that are contained in $(p_{k-2C_1},p_{k+1})$ . Then,

$$ \begin{align*} \sum_{\substack{p_k \leqslant x \\ k> 2C_1}} m_k \geqslant m \end{align*} $$

and

(2.11) $$ \begin{align} \sum_{\substack{p_k \leqslant x \\ k> 2C_1}} (p_{k+1} - p_{k-2C_1})^2 \geqslant \sum_{\substack{p_k \leqslant x \\ k > 2C_1}} m_k^2 \bigg(\frac{x^{0.99}}{t}\bigg)^2 \geqslant \frac{x^{1.98}}{t^2} \sum_{\substack{p_k \leqslant x \\ k > 2C_1}} m_k \geqslant m \cdot \frac{x^{1.98}}{t^2}. \end{align} $$

However, by (2.10) and the Cauchy–Schwarz inequality,

(2.12) $$ \begin{align} \sum_{\substack{p_k \leqslant x \\ k> 2C_1}} & (p_{k+1} - p_{k-2C_1})^2 \notag \\ & \leqslant (2C_1+1) \sum_{\substack{p_k \leqslant x \\ k > 2C_1}} ( (p_{k+1}-p_{k})^2 + (p_{k}-p_{k-1})^2 + \cdots + (p_{k-2C_1+1}-p_{k-2C_1})^2 ) \notag \\ & \leqslant (2C_1+1)^2 \sum_{p_{k} \leqslant x} (p_{k+1}-p_{k})^2 \notag \\ & \leqslant (2C_1+1)^2 \cdot C \cdot x^{{23}/{18}+0.001} < x^{{23}/{18}+0.01} \quad \text{(because } x \text{ is large)}. \end{align} $$

Combining (2.11) and (2.12), we obtain

$$ \begin{align*} m \leqslant \frac{t^2}{x^{{13}/{18}-0.03}} < \frac{t}{x^{{1}/{18}-0.04}} < t^{0.99}. \end{align*} $$

(We have used $t < x^{{2}/{3}+0.01}$ and $t<x$ .) Therefore,

$$ \begin{align*} \# \mathcal{I}_{\text{good}}(n_1,n_2,\ldots,n_t) = t-1-m \geqslant t - 2t^{0.99}. \end{align*} $$

The proof of Corollary 2.6 is complete.

The following lemma is the key step of this paper.

Lemma 2.7. Suppose that x is larger than some constant depending at most on f and $\varepsilon _0$ . Let p be a prime number. Let t be an integer such that

$$ \begin{align*} \bigg( \frac{10}{\varepsilon_0} \bigg)^{100} \leqslant t \leqslant C_0 x^{{2}/{3}}, \end{align*} $$

where $C_0$ is the constant in Lemma 2.2. Let J be an interval such that

$$ \begin{align*} J \subset [\varepsilon_0x, \min\{p-1,x\}]. \end{align*} $$

If $n_1,n_2,\ldots ,n_t$ are distinct integers in the interval J, then

(2.13) $$ \begin{align} \log p \sum_{t' = \lceil ({1+\varepsilon_0})t/{2}\rceil}^{t} \min_{1 \leqslant j \leqslant t'} \{ \operatorname{ord}_{p} ( n_{j}! + f(n_j) ) \} \leqslant \frac{|J|}{2} \log t + \frac{x\log x}{t^{0.98}} + O(x). \end{align} $$

Proof. Let $t_1 = \# \mathcal {I}_{\text {good}}(n_1,n_2,\ldots ,n_t)$ . Obviously, $t_1 \leqslant t-1$ . By Corollary 2.6,

(2.14) $$ \begin{align} t_1 \geqslant t-2t^{0.99}. \end{align} $$

We list the lengths of all intervals in $\mathcal {I}_{\text {good}}(n_1,n_2,\ldots ,n_t)$ in ascending order:

(2.15) $$ \begin{align} \gamma_1 \leqslant \gamma_2 \leqslant \cdots \leqslant \gamma_{t_1}. \end{align} $$

Since $n_1,n_2,\ldots ,n_t \in J$ and the intervals in $\mathcal {I}_{\text {good}}(n_1,n_2,\ldots ,n_t)$ are disjoint,

$$ \begin{align*} \sum_{k=1}^{t_1} \gamma_k \leqslant |J|. \end{align*} $$

Let

(2.16) $$ \begin{align} t_2 = \lfloor t-3t^{0.99} \rfloor. \end{align} $$

From $(t_1 - t_2+1)\gamma _{t_2} \leqslant \sum _{t'=t_2}^{t_1} \gamma _{t'} \leqslant |J|$ , and using (2.14) and (2.16), we deduce that

(2.17) $$ \begin{align} \gamma_{t_2} \leqslant \frac{|J|}{t^{0.99}}. \end{align} $$

For any $t' \leqslant t$ , from the definition of $\mathcal {I}(n_1,n_2,\ldots ,n_{t'})$ (see Definition 2.3), we immediately see that

$$ \begin{align*} \# ( \mathcal{I}(n_1,n_2,\ldots,n_{t'}) \setminus \mathcal{I}(n_1,n_2,\ldots,n_{t'-1}) ) \leqslant 2. \end{align*} $$

Let k be an integer in the range

(2.18) $$ \begin{align} 0 \leqslant k \leqslant t_3 \quad\text{where } t_3 = \lfloor \tfrac{1}{2}( t - 5t^{0.99} )\rfloor - 1. \end{align} $$

Then,

(2.19) $$ \begin{align} \# ( \mathcal{I}(n_1,n_2,\ldots,n_{t-k}) \cap \mathcal{I}_{\text{good}}(n_1,n_2,\ldots,n_t) ) \geqslant t_1 - 2k. \end{align} $$

In particular, for any k in the range (2.18), we have (recall (2.14))

$$ \begin{align*} \# ( \mathcal{I}(n_1,n_2,\ldots,n_{t-k}) \cap \mathcal{I}_{\text{good}}(n_1,n_2,\ldots,n_t) ) \geqslant 3t^{0.99}. \end{align*} $$

Let $I_1^{(k)},I_2^{(k)},\ldots ,I_{\lceil t^{0.99}\rceil + 1}^{(k)}$ be the shortest $\lceil t^{0.99}\rceil + 1$ intervals in $\mathcal {I}(n_1,n_2,\ldots ,n_{t-k}) \cap \mathcal {I}_{\text {good}}(n_1,n_2,\ldots ,n_t)$ such that

$$ \begin{align*} |I_1^{(k)}| \leqslant |I_2^{(k)}| \leqslant \cdots \leqslant |I_{\lceil t^{0.99}\rceil + 1}^{(k)}|. \end{align*} $$

Then, by (2.19) and (2.15),

(2.20) $$ \begin{align} |I_{i}^{(k)}| \leqslant \gamma_{2k+i} \quad\text{for } i=1,2,\ldots,\lceil t^{0.99}\rceil + 1. \end{align} $$

In particular, taking (2.18) and (2.17) into consideration,

(2.21) $$ \begin{align} |I_{\lceil t^{0.99}\rceil + 1}^{(k)}| \leqslant \gamma_{t_2} \leqslant \frac{|J|}{t^{0.99}}. \end{align} $$

Let k be in the range (2.18). By Lemma 2.4, for any $i \in \{1,2,\ldots ,\lceil t^{0.99}\rceil \}$ ,

(2.22) $$ \begin{align} (\log p) & \cdot\min_{1 \leqslant j \leqslant t-k}\{\operatorname{ord}_{p}(n_{j}! + f(n_{j}))\} \notag\\ & \leqslant |I_i^{(k)}|\hspace{-1.2pt}\log \bigg( \frac{ex}{|I_{i}^{(k)}|} \bigg) + \bigg(|I_{i+1}^{(k)}|-|I_i^{(k)}| + \frac{x^{0.99}}{t} + O(1)\bigg)\log x. \end{align} $$

Taking the average of (2.22) over $i \in \{1,2,\ldots ,\lceil t^{0.99}\rceil \}$ and noticing that the function $y \mapsto y\log (ex/y)$ is increasing on $y \in (0,x)$ , we deduce that

$$ \begin{align*} (\log p) & \cdot\min_{1 \leqslant j \leqslant t-k}\{\operatorname{ord}_{p}(n_{j}! + f(n_{j}))\} \\ & \leqslant |I_{\lceil t^{0.99}\rceil}^{(k)}|\hspace{-1.2pt}\log \bigg( \frac{ex}{|I_{\lceil t^{0.99}\rceil}^{(k)}|} \bigg) + \bigg( \frac{|I_{\lceil t^{0.99}\rceil + 1}^{(k)}|}{t^{0.99}} + \frac{x^{0.99}}{t} + O(1) \bigg) \log x. \end{align*} $$

Then, bounding $|I_{\lceil t^{0.99}\rceil }^{(k)}|$ by (2.20) and bounding $|I_{\lceil t^{0.99}\rceil + 1}^{(k)}|$ by (2.21), we obtain

(2.23) $$ \begin{align} (\log p) & \cdot\min_{1 \leqslant j \leqslant t-k}\{\operatorname{ord}_{p}(n_{j}! + f(n_{j}))\} \notag\\ & \leqslant \gamma_{2k+\lceil t^{0.99}\rceil} \log \bigg( \frac{ex}{\gamma_{2k+\lceil t^{0.99}\rceil}} \bigg) + \bigg( \frac{|J|}{t^{1.98}} + \frac{x^{0.99}}{t} + O(1) \bigg) \log x. \end{align} $$

Summing (2.23) over k in the range (2.18),

(2.24) $$ \begin{align} \log p & \sum_{k=0}^{t_3} \min_{1 \leqslant j \leqslant t-k}\{\operatorname{ord}_{p}(n_{j}! + f(n_{j}))\} \notag \\ &\leqslant \bigg( \sum_{k=0}^{t_3} \gamma_{2k+\lceil t^{0.99}\rceil} \log \bigg( \frac{ex}{\gamma_{2k+\lceil t^{0.99}\rceil}} \bigg) \bigg) + \bigg( \frac{|J|}{t^{0.98}} + x^{0.99} + O(t) \bigg) \log x \notag \\ &\leqslant \bigg( \sum_{k=0}^{t_3} \gamma_{2k+\lceil t^{0.99}\rceil} \log \bigg( \frac{ex}{\gamma_{2k+\lceil t^{0.99}\rceil}} \bigg) \bigg) + \frac{x\log x}{t^{0.98}} + O(x), \end{align} $$

where in the last inequality, we have used $|J| < x$ and $t \leqslant C_0 x^{{2}/{3}}$ .

Finally, since the function $y \mapsto y\log (ex/y)$ is concave and increasing on $y \in (0,x)$ , and since

$$ \begin{align*} \sum_{k=0}^{t_3} \gamma_{2k+\lceil t^{0.99}\rceil} \leqslant \frac{1}{2} \sum_{k=0}^{t_3} ( \gamma_{2k+\lceil t^{0.99}\rceil} + \gamma_{2k+\lceil t^{0.99}\rceil+1} ) < \frac{1}{2} \sum_{k=1}^{t_1} \gamma_k \leqslant \frac{|J|}{2}, \end{align*} $$

we have (by Jensen’s inequality and monotonicity)

(2.25) $$ \begin{align} \sum_{k=0}^{t_3} \gamma_{2k+\lceil t^{0.99}\rceil} \log \bigg( \frac{ex}{\gamma_{2k+\lceil t^{0.99}\rceil}} \bigg) &< (t_3+1) \cdot \frac{|J|/2}{t_3+1} \log \bigg( \frac{ex}{(|J|/2)/(t_3+1)} \bigg) \notag \\ &< \frac{|J|}{2} \log \bigg( \frac{ext}{|J|/2} \bigg) = \frac{|J|}{2} \log t + \frac{|J|}{2} \log \bigg( \frac{ex}{|J|/2} \bigg) \notag \\ &< \frac{|J|}{2} \log t + x, \end{align} $$

where the last inequality holds because $|J|/2<x$ and the function $y \mapsto y\log (ex/y)$ is increasing on $y \in (0,x)$ .

By (2.24), (2.25) and the fact that $t-t_3 < \lceil ({(1+\varepsilon _0)t}/{2}) \rceil $ (because $t> (10/\varepsilon _0)^{100}$ and $t_3 = \lfloor ( t - 5t^{0.99} )/2 \rfloor - 1$ ), we complete the proof of (2.13).

3 Proof of Theorem 1.1

By the definitions of $B(\lambda )$ and Z (see (2.2)), we have $P(Z) \leqslant \lambda x$ . For any prime number p, we define the set

$$ \begin{align*} N_p := \{ n \in \mathbb{Z} \cap [\varepsilon_0x,x] \mid n \notin B(\lambda) \text{ and } p \mid ({n!}+f(n)) \}. \end{align*} $$

Then,

(3.1) $$ \begin{align} (\log p)\operatorname{ord}_p(Z) = \log p \sum_{n \in N_p} \operatorname{ord}_p({n!}+f(n)). \end{align} $$

If $n \geqslant p$ and $p \mid ({n!}+f(n))$ , then $f(n) \equiv 0 \pmod {p}$ . Let $a \neq 0$ be the leading coefficient of $f(X)$ . If $p>|a|$ , then $f(X) \pmod {p}$ has degree $\deg f$ . Hence, for any two real numbers $y_2>y_1 \geqslant p$ , we have $\# (N_p \cap [y_1,y_2]) \leqslant ((y_2-y_1)/p + 1)\deg f$ . That is,

(3.2) $$ \begin{align} \# (N_p \cap [y_1,y_2]) \ll \frac{y_2-y_1}{p} + 1 \quad\text{for any } y_2>y_1 \geqslant p. \end{align} $$

If $p \leqslant |a|$ , then $\# (N_p \cap [y_1,y_2]) \leqslant y_2-y_1+1 \leqslant |a|(y_2-y_1)/p + 1$ , so (3.2) still holds.

Recall that $|f(n)| \leqslant n^{C_1}$ for all $n \geqslant 2$ . Since $f(n) \neq 0$ for $n \geqslant n_0$ , we have $\operatorname {ord}_p(f(n)) \leqslant C_1 \log n/\log p$ . We can take a large constant $C_2$ depending only on $C_1$ and $n_0$ (so $C_2$ depends only on f) such that

$$ \begin{align*} \begin{cases} C_2 - {C_1} \log C_2/{\log 2}> C_1+1, \\ C_2 > {C_1}/{\log 2}, \\ C_2 > n_0. \end{cases} \end{align*} $$

(For example, $C_2 = 100(C_1+1)^2 + n_0$ is sufficient.) Then, for any prime p and any integer $n \geqslant C_2p$ , we have $n/p-1> C_1 \log n/\log p$ . Since $\operatorname {ord}_p(n!)> n/p - 1$ , we deduce that $\operatorname {ord}_p({n!}+f(n)) = \operatorname {ord}_p(f(n)) = O(\log n/\log p)$ for any prime p and any $n \geqslant C_2p$ . Since $\{ n \in N_p \mid n \geqslant C_2p \} \subset [C_2p,x]$ , it follows that $\#\{ n \in N_p \mid n \geqslant C_2p \} \ll (x/p+1)$ by (3.2). Therefore, for any prime p,

(3.3) $$ \begin{align} \log p \sum_{\substack{n \in N_p \\ n \geqslant C_2p}}\operatorname{ord}_p({n!}+f(n)) \ll \bigg( \frac{x}{p} + 1 \bigg) \cdot \log x \ll x\log x. \end{align} $$

By (3.2), $|N_p \cap [p,C_2p)| = O(1)$ . Since $\log ({n!}+f(n)) = O(x\log x)$ for $n_0 < n \leqslant x$ ,

(3.4) $$ \begin{align} \log p \sum_{\substack{n \in N_p \\ p \leqslant n < C_2p}}\operatorname{ord}_p({n!}+f(n))\ll 1 \cdot x\log x \ll x\log x. \end{align} $$

For any $n \in N_p \cap [1,p)$ , by the definition of $B(\lambda )$ , we have $p \leqslant \lambda n$ . Consider the interval

$$ \begin{align*} J_p := [\max\{p/\lambda, \varepsilon_0 x\}, \min\{ p-1,x \}]. \end{align*} $$

Then,

$$ \begin{align*} N_p \cap [1,p) \subset J_p. \end{align*} $$

We claim that

(3.5) $$ \begin{align} \log p \sum_{\substack{n \in N_p \\ n<p}}\operatorname{ord}_p({n!}+f(n)) \leqslant \frac{1}{9\log (2/(1+\varepsilon_0))}|J_p| \mathrm{log}^2\ x + O(x\log x). \end{align} $$

If $N_p \cap [1,p) = \emptyset $ , then there is nothing to prove. In the following, we assume that $T:= \#(N_p \cap [1,p)) \geqslant 1$ and $N_p \cap [1,p) = \{ n_1,n_2,\ldots ,n_{T} \}$ . Relabelling if necessary, we may assume that

(3.6) $$ \begin{align} \operatorname{ord}_{p}(n_1! + f(n_1)) \geqslant \operatorname{ord}_{p}(n_2! + f(n_2)) \geqslant \cdots \geqslant \operatorname{ord}_{p}(n_T! + f(n_T)). \end{align} $$

If $|J_p| \geqslant 1$ , then Lemma 2.2 implies that $T \leqslant C_0 |J_p|^{{2}/{3}} < C_0 x^{{2}/{3}}$ . If $|J_p| < 1$ , then ${T \leqslant 1 < C_0 x^{{2}/{3}}}$ . Therefore, we always have

(3.7) $$ \begin{align} T < C_0 x^{{2}/{3}}. \end{align} $$

Let $k^{*}$ be the least nonnegative integer such that

$$ \begin{align*} \bigg\lfloor \bigg( \frac{1+\varepsilon_0}{2} \bigg)^{k^*} T \bigg\rfloor < \bigg( \frac{10}{\varepsilon_0} \bigg)^{100}. \end{align*} $$

We denote

$$ \begin{align*} T_k := \bigg( \frac{1+\varepsilon_0}{2} \bigg)^{k} T \quad\text{for } k=0,1,\ldots,k^{*}. \end{align*} $$

Note that

(3.8) $$ \begin{align} k^{*} = \frac{\log T}{\log (2/(1+\varepsilon_0))} + O(1). \end{align} $$

For $0 \leqslant k < k^{*}$ , by Lemma 2.7 (with $t = \lfloor T_k \rfloor $ and $J = J_p$ ) and (3.6),

(3.9) $$ \begin{align} \log p \sum_{i = \lfloor T_{k+1} \rfloor + 1}^{\lfloor T_k \rfloor} \operatorname{ord}_{p}(n_i! + f(n_i)) \leqslant \frac{|J_p|}{2}\log T_k + \frac{x\log x}{\lfloor T_k \rfloor^{0.98}} + O(x). \end{align} $$

Since $\log ({n!}+f(n)) = O(x\log x)$ for $n_0 < n \leqslant x$ and $T_{k^{*}} = O(1)$ ,

(3.10) $$ \begin{align} \log p \sum_{i=1}^{\lfloor T_{k^{*}} \rfloor} \operatorname{ord}_{p}(n_i! + f(n_i)) = O(x\log x). \end{align} $$

Summing (3.9) over $k=0,1,\ldots ,k^{*}-1$ and adding (3.10),

(3.11) $$ \begin{align} \log p & \sum_{i=1}^{T} \operatorname{ord}_{p}(n_i! + f(n_i)) \notag\\ & \leqslant \frac{|J_p|}{2} \sum_{k=0}^{k^{*}-1} \log T_k + x\log x \sum_{k=0}^{k^{*}-1} \frac{1}{\lfloor T_k \rfloor^{0.98}} + O(x\log x) + O(k^{*}x). \end{align} $$

(If $k^{*} = 0$ , the empty sum $\sum _{k=0}^{k^{*}-1}$ is zero.) We estimate each term on the right-hand side of (3.11) as follows. Since

$$ \begin{align*} \sum_{k=0}^{k^{*}-1} \log T_k &= \sum_{k=0}^{k^{*}-1} \bigg( \log T - k\log\bigg( \frac{2}{1+\varepsilon_0} \bigg) \bigg) = k^{*}\log T - \frac{(k^{*}-1)k^{*}}{2} \log \bigg( \frac{2}{1+\varepsilon_0} \bigg) \\ &= \frac{1}{2\log(2/(1+\varepsilon_0))}\log^2 T + O(\log T) \quad (\text{by (3.8)}) \\ & \leqslant \frac{2}{9\log(2/(1+\varepsilon_0))} \log^{2} x + O(\log x) \quad (\text{by (3.7)}), \end{align*} $$

we have

$$ \begin{align*} \frac{|J_p|}{2} \sum_{k=0}^{k^{*}-1} \log T_k \leqslant \frac{1}{9\log(2/(1+\varepsilon_0))} |J_p|\hspace{-1.2pt}\log^2 x + O(x\log x). \end{align*} $$

Since $T_k$ decreases exponentially with respect to k,

$$ \begin{align*} \sum_{k=0}^{k^{*}-1} \frac{1}{\lfloor T_k \rfloor^{0.98}} \ll \frac{1}{\lfloor T_{k^{*}-1} \rfloor^{0.98}} \ll 1. \end{align*} $$

By (3.8) and (3.7),

$$ \begin{align*} k^{*}x = O(x\log x). \end{align*} $$

By substituting these estimates into (3.11), we deduce that

$$ \begin{align*} \log p \sum_{i=1}^{T} \operatorname{ord}_{p}(n_i! + f(n_i)) \leqslant \frac{1}{9\log (2/(1+\varepsilon_0))}|J_p|\hspace{-1.2pt}\log^2 x + O(x\log x), \end{align*} $$

which is exactly the statement in (3.5) that we claimed.

Combining (3.1), (3.3), (3.4) and (3.5),

(3.12) $$ \begin{align} (\log p) \operatorname{ord}_p(Z) \leqslant \frac{1}{9\log (2/(1+\varepsilon_0))}|J_p| \mathrm{log}^2\ x + O(x\log x), \end{align} $$

which holds for any prime number p. Since $P(Z) \leqslant \lambda x$ and $|J_p| \leqslant \min \{ p,x \} - p/\lambda $ , summing (3.12) over primes $p \leqslant \lambda x$ , we obtain

$$ \begin{align*} \log Z \leqslant \frac{1}{9\log (2/(1+\varepsilon_0))} \bigg( \sum_{p \leqslant x} (1-1/\lambda)p + \sum_{x<p\leqslant \lambda x} (x - p/\lambda) \bigg) \log^2 x + O(x^2), \end{align*} $$

where for the error term, we have used $\pi (\lambda x) \ll x/\mathrm{log}\ x$ . Now, we note that because $\pi (y) = (1+o(1))y/\mathrm{log}\ y$ and

$$ \begin{align*} \sum_{p \leqslant y} p = \bigg( \frac{1}{2}+o(1) \bigg) \frac{y^2}{\log y} \quad \text{as } y \rightarrow +\infty, \end{align*} $$

we can deduce that

(3.13) $$ \begin{align} \log Z \leqslant \bigg( \frac{1}{9\log (2/(1+\varepsilon_0))}\frac{\lambda - 1}{2} + o(1) \bigg)\, x^2 \log x \quad \text{as } x \rightarrow +\infty. \end{align} $$

By comparing (2.3) with (3.13),

$$ \begin{align*} \frac{1}{9\log (2/(1+\varepsilon_0))}\frac{\lambda - 1}{2} \geqslant \frac{1}{2} - 2\varepsilon_0, \end{align*} $$

which implies that

$$ \begin{align*} \lambda \geqslant 1+9(1-4\varepsilon_0)\log\bigg( \frac{2}{1+\varepsilon_0} \bigg). \end{align*} $$

However, this contradicts the assumptions $\lambda = 1+9\log 2 - 100\varepsilon _0$ and $\varepsilon _0 \in (0,1/100)$ .

Therefore, the lower asymptotic density of $B(\lambda )$ must be greater than or equal to $\varepsilon _0$ . The proof of Theorem 1.1 is complete.

Acknowledgement

The author is very grateful to the referee for helpful comments and suggestions. In particular, the author thanks the referee (and also Runbo Li) for kindly reminding him of the known improvements to Lemma 2.5.

References

Erdős, P. and Stewart, C. L., ‘On the greatest and least prime factors of $n!+1$ ’, J. Lond. Math. Soc. (2) 13(3) (1976), 513519.10.1112/jlms/s2-13.3.513CrossRefGoogle Scholar
Heath-Brown, D. R., ‘The difference between consecutive primes, III’, J. Lond. Math. Soc. (2) 20(2) (1979), 177178.10.1112/jlms/s2-20.2.177CrossRefGoogle Scholar
Luca, F. and Shparlinski, I. E., ‘Prime divisors of shifted factorials’, Bull. Lond. Math. Soc. 37(6) (2005), 809817.10.1112/S0024609305004923CrossRefGoogle Scholar
Luca, F. and Shparlinski, I. E., ‘On the largest prime factor of $n!+{2}^n-1$ ’, J. Théor. Nombres Bordeaux 17(3) (2005), 859870.10.5802/jtnb.524CrossRefGoogle Scholar
Maynard, J., ‘On the difference between consecutive primes’, Preprint, 2012, arXiv:1201.1787 [math.NT].Google Scholar
Murty, M. R. and Wong, S., ‘The $ABC$ conjecture and prime divisors of the Lucas and Lehmer sequences’, in: Number Theory for the Millennium, III (Urbana, IL, 2000) (eds. Bennett, M. A., Berndt, B., Boston, N., Hildebrand, A. J., Diamond, H. G. and Philipp, W.) (A. K. Peters, Natick, MA, 2002), 4354.Google Scholar
Peck, A., On the Differences Between Consecutive Primes, PhD Thesis, University of Oxford, 1996.Google Scholar
Stadlmann, J., ‘On the mean square gap between primes’, Preprint, 2022, arXiv:2212.10867 [math.NT].Google Scholar
Stewart, C. L., ‘On the greatest and least prime factors of $n!+1$ , II’, Publ. Math. Debrecen 65(3–4) (2004), 461480.10.5486/PMD.2004.3190CrossRefGoogle Scholar