Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:55:22.904Z Has data issue: false hasContentIssue false

ON THE DOUBLING CONDITION IN THE INFINITE-DIMENSIONAL SETTING

Published online by Cambridge University Press:  09 February 2023

DARIUSZ KOSZ*
Affiliation:
Basque Center for Applied Mathematics, 48009 Bilbao, Spain and Wrocław University of Science and Technology, 50-370 Wrocław, Poland

Abstract

We present a systematic approach to the problem whether a topologically infinite-dimensional space can be made homogeneous in the Coifman–Weiss sense. The answer to the question is negative, as expected. Our leading representative of spaces with this property is $\mathbb {T}^\omega = \mathbb {T} \times \mathbb {T} \times \cdots $ with the natural product topology.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was supported by the Basque Government (BERC 2022-2025), by the Spanish State Research Agency (SEV-2017-0718) and by the Foundation for Polish Science (START 032.2022).

References

Aimar, H., Iaffei, B. and Nitti, L., ‘On the Macías–Segovia metrization of quasi-metric space’, Rev. Un. Mat. Argentina 41 (1998), 6775.Google Scholar
Bendikov, A. D., Potential Theory on Infinite-dimensional Abelian Groups, de Gruyter Studies in Mathematics, 21 (de Gruyter, Berlin, 1995).10.1515/9783110876840CrossRefGoogle Scholar
Coifman, R. R. and Weiss, G., Analyse Harmonique Non-commutative sur Certaines Espaces Homogènes, Lecture Notes in Mathematics, 242 (Springer-Verlag, Berlin, 1971).10.1007/BFb0058946CrossRefGoogle Scholar
Edgar, G., Integral, Probability, and Fractal Measures, Undergraduate Texts in Mathematics (Springer-Verlag, New York, 1998).10.1007/978-1-4757-2958-0CrossRefGoogle Scholar
Engelking, R., Dimension Theory, North-Holland Mathematical Library, 19 (North-Holland Publishing Company, Amsterdam–New York, 1978).Google Scholar
Fernández, E., Análisis de Fourier en el Toro Infinito-dimensional, PhD Thesis, Universidad de La Rioja, 2019.Google Scholar
Fernández, E. and Roncal, L., ‘On the absolute divergence of Fourier series on the infinite-dimensional torus’, Colloq. Math. 157 (2019), 143155.10.4064/cm7568-6-2018CrossRefGoogle Scholar
Fernández, E. and Roncal, L., ‘A decomposition of Calderón–Zygmund type and some observations on differentiation of integrals on the infinite-dimensional torus’, Potential Anal. 53 (2020), 14491465.10.1007/s11118-019-09813-8CrossRefGoogle Scholar
Hytönen, T., ‘A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa’, Publ. Mat. 54 (2010), 485504.10.5565/PUBLMAT_54210_10CrossRefGoogle Scholar
Kosz, D., ‘On differentiation of integrals in the infinite-dimensional torus’, Studia Math. 258 (2021), 103119.10.4064/sm191001-10-2CrossRefGoogle Scholar
Kosz, D., Martínez-Perales, J., Paternostro, V., Rela, E. and Roncal, L., ‘Maximal operators on the infinite-dimensional torus’, Math. Ann., to appear.Google Scholar
Luukkainen, J. and Saksman, E., ‘Every complete doubling metric space carries a doubling measure’, Proc. Amer. Math. Soc. 126 (1998), 531534.10.1090/S0002-9939-98-04201-4CrossRefGoogle Scholar
Paluszyński, M. and Stempak, K., ‘On quasi-metric and metric spaces’, Proc. Amer. Math. Soc. 137 (2009), 43074312.10.1090/S0002-9939-09-10058-8CrossRefGoogle Scholar
Stempak, K., ‘On some structural properties of spaces of homogeneous type’, Taiwanese J. Math. 19 (2015), 603613.10.11650/tjm.19.2015.3428CrossRefGoogle Scholar
Vol’berg, A. L. and Konyagin, S. V., ‘On measures with the doubling condition’, Math. USSR Izv. 30 (1988), 629638.10.1070/IM1988v030n03ABEH001034CrossRefGoogle Scholar
Wei, C., Wen, S. and Wen, Z., ‘Doubling measures on uniform Cantor sets’, J. Math. Anal. Appl. 430 (2015), 500516.10.1016/j.jmaa.2015.05.002CrossRefGoogle Scholar