Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T10:09:52.788Z Has data issue: false hasContentIssue false

ON THE COMPLETION OF $b$-METRIC SPACES

Published online by Cambridge University Press:  05 July 2018

NGUYEN VAN DUNG*
Affiliation:
Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam email nguyenvandung2@tdt.edu.vn
VO THI LE HANG
Affiliation:
Faculty of Mathematics and Information Technology Teacher Education, Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam email vtlhang@dthu.edu.vn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on the metrisation of $b$-metric spaces of Paluszyński and Stempak [‘On quasi-metric and metric spaces’, Proc. Amer. Math. Soc.137(12) (2009), 4307–4312], we prove that every $b$-metric space has a completion. Our approach resolves the limitation in using the quotient space of equivalence classes of Cauchy sequences to obtain a completion of a $b$-metric space.

Type
Research Article
Copyright
© 2018 Australian Mathematical Publishing Association Inc. 

References

Aimar, H., Iaffei, B. and Nitti, L., ‘On the Macías–Segovia metrization of quasi-metric spaces’, Rev. Un. Mat. Argentina 41 (1998), 6775.Google Scholar
An, T. V. and Dung, N. V., ‘Answers to Kirk–Shahzad’s questions on strong b-metric spaces’, Taiwanese J. Math. 20(5) (2016), 11751184.Google Scholar
An, T. V., Tuyen, L. Q. and Dung, N. V., ‘Stone-type theorem on b-metric spaces and applications’, Topology Appl. 185–186 (2015), 5064.Google Scholar
Aphane, M. and Moshokoa, S. P., ‘On completeness and bicompletions of quasi b-metric spaces’, Asian J. Math. Appl. 2015 (2015), 110.Google Scholar
Berinde, V. and Choban, M., ‘Generalized distances and their associate metrics. Impact on fixed point theory’, Creat. Math. Inform. 22(1) (2013), 2332.Google Scholar
Connell, R. M., Kwok, R., Curlander, J., Kober, W. and Pang, S., ‘𝛹–S correlation and dynamic time warping: two methods for tracking ice floes in SAR images’, IEEE Trans. Geosci. Remote Sens. 29(6) (1991), 10041012.Google Scholar
Cortelazzo, G., Mian, G. A., Vezzi, G. and Zamperoni, P., ‘Trademark shapes description by string-matching techniques’, Pattern Recognit. 27(8) (1994), 10051018.Google Scholar
Czerwik, S., ‘Contraction mappings in b-metric spaces’, Acta Math. Univ. Ostrav. 1(1) (1993), 511.Google Scholar
Czerwik, S., ‘Nonlinear set-valued contraction mappings in b-metric spaces’, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 263276.Google Scholar
Dung, N. V., An, T. V. and Hang, V. T. L., ‘Remarks on Frink’s metrization technique and applications’, Fixed Point Theory (2018), 22 pp, to appear.Google Scholar
Fagin, R. and Stockmeyer, L., ‘Relaxing the triangle inequality in pattern matching’, Int. J. Comput. Vis. 30(3) (1998), 219231.Google Scholar
Frink, A. H., ‘Distance functions and the metrization problem’, Bull. Amer. Math. Soc. 43(2) (1937), 133142.Google Scholar
Heinonen, J., Lectures on Analysis on Metric Spaces, Universitext (Springer, New York, 2001).Google Scholar
Khamsi, M. A. and Hussain, N., ‘KKM mappings in metric type spaces’, Nonlinear Anal. 73(9) (2010), 31233129.Google Scholar
Kirk, W. and Shahzad, N., Fixed Point Theory in Distance Spaces (Springer, Cham, 2014).Google Scholar
Macías, R. A. and Segovia, C., ‘Lipschitz functions on spaces of homogeneous type’, Adv. Math. 33(3) (1979), 257270.Google Scholar
Paluszyński, M. and Stempak, K., ‘On quasi-metric and metric spaces’, Proc. Amer. Math. Soc. 137(12) (2009), 43074312.Google Scholar
Schroeder, V., ‘Quasi-metric and metric spaces’, Conform. Geom. Dyn. 10 (2006), 355360.Google Scholar
Xia, Q., ‘The geodesic problem in quasimetric spaces’, J. Geom. Anal. 19 (2009), 452479.Google Scholar