Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T03:50:46.830Z Has data issue: false hasContentIssue false

On lower estimates for linear forms involving certain transcendental numbers

Published online by Cambridge University Press:  17 April 2009

Keijo Väänänen
Affiliation:
Department of Mathematics, University of Oulu, Oulu, Finland.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let

where λ is rational and not an integer. The author investigates lower estimates for example for

where the αi are distinct rational numbers not 0, and where x1, …, xk, are integers and

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1976

References

[1]Baker, A., “On some diophantine inequalities involving the exponential function”, Canad. J. Math. 17 (1965), 616626.Google Scholar
[2]Cassels, J.S.W., An introduction to diophantine approximations (Cambridge Tracts in Mathematics and Mathematical Physics, 45. Cambridge University Press, Cambridge, 1957).Google Scholar
[3]фельдман, Н.И [N.I. Fel'dman], “Оценкн снизу для некоторых линейных форм” [Lower estimates for certain linear forms], Vestnik Moskov. Univ. Ser. I Mat. Meh. 22, No. 2 (1967), 6372.Google Scholar
[4]Mahler, Kurt, “On a paper by A. Baker on the approximation of rational powers of e”, Acta Arith. 27 (1975), 6187.CrossRefGoogle Scholar
[5]Шидповский, А.Б.[A.B. Šidlovskiĭ], “О трансцендентностн и апгебраической независимости значений некоторых функций” [Transcendentality and algebraic independence of the values of certain functions], Trudy Moskov. Mat. Obšč. 8 (1959), 283320; Amer. Math. Soc. Transl. (2) 27 (1963), 191–230.Google ScholarPubMed
[6]Siegel, C.L., “Über einige Anwendungen diophantischer Approximationen”, Abh. Preuss. Akad. Wiss. Phys.-mat. Kl. Berlin (1929), no. 1; Carl Ludwig Siegel Gesammelte Abhandlungen, I, 209266 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).Google Scholar
[7]Siegel, Carl Ludwig, Transcendental numbers (Annals of Mathematics Studies, 16. Princeton University Press, Princeton, 1949).Google Scholar