Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T22:33:04.207Z Has data issue: false hasContentIssue false

ON A CLASS OF GENERALIZED FERMAT EQUATIONS

Published online by Cambridge University Press:  18 June 2010

ANDRZEJ DĄBROWSKI*
Affiliation:
Institute of Mathematics, University of Szczecin, ul. Wielkopolska 15, 70-451 Szczecin, Poland (email: dabrowsk@wmf.univ.szczecin.pl)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We generalize the main result of the paper by Bennett and Mulholland [‘On the diophantine equation xn+yn=2αpz2’, C. R. Math. Acad. Sci. Soc. R. Can.28 (2006), 6–11] concerning the solubility of the diophantine equation xn+yn=2αpz2. We also demonstrate, by way of examples, that questions about solubility of a class of diophantine equations of type (3,3,p) or (4,2,p) can be reduced, in certain cases, to studying several equations of the type (p,p,2).

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Bennett, M. A. and Mulholland, J., ‘On the diophantine equation x n+y n=2αpz 2’, C. R. Math. Acad. Sci. Soc. R. Can. 28 (2006), 611.Google Scholar
[2]Bennett, M. A. and Skinner, C. M., ‘Ternary diophantine equations via Galois representations and modular forms’, Canad. J. Math. 56 (2004), 2354.CrossRefGoogle Scholar
[3]Bennett, M. A., Vatsal, V. and Yazdani, S., ‘Ternary diophantine equations of signature (p,p,3)’, Compositio Math. 140 (2004), 13991416.CrossRefGoogle Scholar
[4]Billerey, N., ‘Formes homogènes de degré 3 et puissances p-ièmes’, J. Number Theory 128 (2008), 12721294.CrossRefGoogle Scholar
[5]Breuil, C., Conrad, B., Diamond, F. and Taylor, R., ‘On the modularity of elliptic curves over ℚ: wild 3-adic exercises’, J. Amer. Math. Soc. 14 (2001), 843939.CrossRefGoogle Scholar
[6]Dąbrowski, A., ‘On the integers represented by x 4y 4’, Bull. Aust. Math. Soc. 76 (2007), 133136.CrossRefGoogle Scholar
[7]Darmon, H. and Merel, L., ‘Winding quotients and some variants of Fermat’s last theorem’, J. reine angew. Math. 490 (1997), 81100.Google Scholar
[8]Ivorra, W., ‘Courbes elliptiques sur ℚ, ayant un point d’ordre 2 rationnel sur ℚ, de conducteur 2Np’, Dissert. Math. 429 (2004), 55pp.CrossRefGoogle Scholar
[9]Ivorra, W. and Kraus, A., ‘Quelques résultats sur les équations ax p+by p=cz 2’, Canad. J. Math. 58 (2006), 115153.CrossRefGoogle Scholar
[10]Kraus, A., ‘Majorations effectives pour l’équation de Fermat généralisée’, Canad. J. Math. 49 (1997), 11391161.CrossRefGoogle Scholar
[11]Kraus, A., ‘Sur l’équation a 3+b 3=c p’, Experiment Math. 7 (1998), 113.CrossRefGoogle Scholar
[12]Papadopoulos, I., ‘Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3’, J. Number Theory 44 (1993), 119152.CrossRefGoogle Scholar
[13]Ribet, K., ‘On modular representations of arising from modular forms’, Invent. Math. 100 (1990), 431476.CrossRefGoogle Scholar
[14]Serre, J.-P., ‘Sur les représentations modulaires de degré 2 de ’, Duke Math. J. 54 (1987), 179230.CrossRefGoogle Scholar
[15]Wiles, A., ‘Modular elliptic curves and Fermat’s last theorem’, Ann. of Math. (2) 141 (1995), 443551.CrossRefGoogle Scholar