Hostname: page-component-857557d7f7-nfgnx Total loading time: 0.001 Render date: 2025-11-24T10:33:29.233Z Has data issue: false hasContentIssue false

A NOTE ON THE GENERALISED RAMANUJAN–NAGELL EQUATION $x^2=2^m+p^n$

Published online by Cambridge University Press:  12 September 2025

YASUTSUGU FUJITA*
Affiliation:
Department of Mathematics, College of Industrial Technology, Nihon University , 2-11-1 Shin-ei, Narashino, Chiba, Japan
MAOHUA LE
Affiliation:
Institute of Mathematics, Lingnan Normal College, Zhanjiang, Guangdong 524048, PR China e-mail: lemaohua2008@163.com

Abstract

Let p be a fixed odd prime. We prove the following results for positive integer solutions $(x,m,n)$ of the equation $(*)\ x^2=2^m+p^n$. (i) If $p \equiv 3 \pmod 8$, then $(*)$ has only the solution $(p,x,m,n)=(3,5,4,2)$. (ii) If $p \equiv 5 \pmod 8$, then $(*)$ has only the solution $(p,x,m,n)=(5,3,2,1)$. (iii) If $p \equiv 7 \pmod 8$, then $(*)$ has at most one solution $(x,m,n)$, except for $p=7$, $(x,m,n)=(3,1,1)$ and $(9,5,2)$. Moreover, if $p=2^q-1$ is a Mersenne prime with $p>7$, where q is an odd prime with $q>3$, then $(*)$ has exactly one solution $(x,m,n)=(2^q+1,q+2,2)$. If $p \equiv 7\pmod 8$, p is not a Mersenne prime and either $p<1.5\times 10^{12}$ or $p>C$, where C is an effectively computable absolute constant, then $(*)$ has only the solutions $p=a^2-2$, where a is an odd positive integer, $(x,m,n)=(a,1,1)$. (iv) If $p \equiv 1\pmod 8$ with $p \ne 17$, then $(*)$ has at most two solutions $(x,m,n)$.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The first author is supported by JSPS KAKENHI Grant Number JP24K06654.

References

Baker, A., ‘Bounds for the solutions of the hyperelliptic equation’, Math. Proc. Cambridge Philos. Soc. 65 (1969), 439444.10.1017/S0305004100044418CrossRefGoogle Scholar
Bennett, M. A. and Skinner, C. M., ‘Ternary Diophantine equations via Galois representations and modular forms’, Canad. J. Math. 56 (2004), 2354.10.4153/CJM-2004-002-2CrossRefGoogle Scholar
Bugeaud, Y., ‘On the Diophantine equation ${x}^2-{2}^m=\pm {y}^n$ ’, Proc. Amer. Math. Soc. 125 (1997), 32033208.10.1090/S0002-9939-97-04093-8CrossRefGoogle Scholar
Le, M.-H., ‘On the number of solutions of the generalized Ramanujan–Nagell equation ${x}^2-D={2}^{n+2}$ ’, Acta Arith. 60 (1991), 149167.10.4064/aa-60-2-149-167CrossRefGoogle Scholar
Le, M.-H., ‘Some exponential Diophantine equations I: The equation ${D}_1{x}^2-{D}_2{y}^2=\lambda {k}^z$ ’, J. Number Theory 55 (1995), 209221.10.1006/jnth.1995.1138CrossRefGoogle Scholar
Luca, F. and Pink, I., ‘On the Diophantine equation ${2}^s+{p}^k={m}^2$ with a Fermat prime $p$ ’, J. Number Theory 268 (2025), 4971.10.1016/j.jnt.2024.09.006CrossRefGoogle Scholar
Mihǎilescu, P., ‘Primary cyclotomic units and a proof of Catalan’s conjecture’, J. reine angew. Math. 572 (2004), 167195.Google Scholar
Nagell, T., Introduction to Number Theory (Wiley, New York, 1951).Google Scholar
Reinhart, A., ‘On orders in quadratic number fields with unusual sets of distances’, Acta Arith. 211 (2023), 6192.10.4064/aa230515-4-10CrossRefGoogle Scholar
Reinhart, A., ‘A counterexample to the Pellian equation conjecture of Mordell’, Acta Arith. 215 (2024), 8595.10.4064/aa240214-3-4CrossRefGoogle Scholar
Wang, T.-T. and Jiang, Y.-Z., ‘On the number of positive integer solutions $\left(x,n\right)$ of the generalized Ramanujan–Nagell equation ${x}^2-{2}^r={p}^n$ ’, Period. Math. Hungar. 75 (2017), 150154.10.1007/s10998-016-0173-9CrossRefGoogle Scholar
Yang, H. and Fu, R.-Q., ‘An upper bound for least solutions of the exponential Diophantine equation ${D}_1{x}^2-{D}_2{y}^2=\lambda {k}^z$ ’, Int. J. Number Theory 11 (2015), 11071114.10.1142/S1793042115500608CrossRefGoogle Scholar