Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T04:02:22.908Z Has data issue: false hasContentIssue false

Metric projections and the differentiability of distance functions

Published online by Cambridge University Press:  17 April 2009

Simon Fitzpatrick
Affiliation:
Department of Mathematics, University of Washington, Seattle, Washington 98195, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let M be a closed subset of a Banach space E such that the norms of both E and E* are Fréchet differentiable. It is shown that the distance function d(·, M) is Fréchet differentiable at a point x of EM if and only if the metric projection onto M exists and is continuous at X. If the norm of E is, moreover, uniformly Gateaux differentiable, then the metric projection is continuous at x provided the distance function is Gateaux differentiable with norm-one derivative. As a corollary, the set M is convex provided the distance function is differentiable at each point of EM. Examples are presented to show that some of our hypotheses are needed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

[1]Abatzoglou, Theagenis, “The metric projection on C2 manifolds in Banach spaces”, J. Approx. Theory 26 (1979), 204211.CrossRefGoogle Scholar
[2]Asplund, Edgar, “Farthest points in reflexive locally uniformly rotund Banach spaces”, Israel J. Math. 4 (1966), 213216.CrossRefGoogle Scholar
[3]Asplund, Edgar, “Čebyšev sets in Hilbert spaces”, Trans. Amer. Math. Soc. 144 (1969), 235240.Google Scholar
[4]Averbukh, V.I. and Smolyanov, O.G., “The theory of differentiation in linear topological spaces”, Russian Math. Surveys 22 (1967), no. 6, 201258.CrossRefGoogle Scholar
[5]Averbukh, V.I. and Smolyanov, O.G., “The various definitions of the derivative in linear topological spaces”, Russian Math. Surveys 23 (1968), no. 4, 67113.CrossRefGoogle Scholar
[6]Blatter, Jörg, “Weiteste Punkte und nächste Punkte”, Rev. Roumaine Math. Pures Appl. 14 (1969), 615621.Google Scholar
[7]Clarke, Frank H., “Generalized gradients and applications”, Trans. Amer. Math. Soc. 205 (1975), 247261.CrossRefGoogle Scholar
[8]Cobzas, S., “Antiproximinal sets in Banach spaces”, Math. Balkanica 4 (1974), 7982.Google Scholar
[9]Edelstein, Michael, “Weakly proximinal sets”, J. Approx. Theory 18 (1976), 18.CrossRefGoogle Scholar
[10]Lau, Ka-Sing, “Almost Chebyshev subsets in reflexive Banach spaces”, Indiana Univ. Math. J. 27 (1978), 791795.CrossRefGoogle Scholar
[11]Lebourg, Gérard, “Valeur moyenne pour gradient géneralisé”, C.R. Acad. Sci. Paris Ser. A 281 (1975), 795797.Google Scholar
[12]Lovaglia, A.R., “Locally uniformly convex Banach spaces”, Trans. Amer. Math. Soc. 78 (1955), 225238.CrossRefGoogle Scholar
[13]Mignot, F., “Contrôle dans les inéquations variationelles elliptiques”, J. Funct. Anal. 22 (1976), 130185.CrossRefGoogle Scholar
[14]Namioka, I. and Phelps, R.R., “Banach spaces which are Asplund spaces”, Duke Math. J. 42 (1975), 735750.CrossRefGoogle Scholar
[15]Nashed, M.Z., “Differentiability and related properties of nonlinear operators: some aspects of the role of differentials in nonlinear functional analysis”, Nonlinear functional analysis and applications, 103309 (Proc. Adv. Seminar, University of Wisconsin, Madison, 1970. Mathematics Research Center Publication No. 26. Academic Press, New York, London, 1971).CrossRefGoogle Scholar
[16]Phelps, R.R., “Gaussian null sets and differentiability of Lipzchitz map on Banach spaces”, Pacific J. Math. 77 (1978), 523531.CrossRefGoogle Scholar
[17]Šmulian, V., “Sur la dérivabilité de la norme dans l'espace de Banach”, C.R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 643648.Google Scholar
[18]Šmulian, V.L., “Sur la structure de la sphère unitaire dans l'espace de Banach”, Rec. Math. [Mat. Sbornik] N.S. 9 (51) (1941), 545561.Google Scholar
[19]Sullivan, Francis, “Geometrical properties determined by the higher duals of a Banach space”, Illinois J. Math. 21 (1977), 315331.CrossRefGoogle Scholar
[20]Троянсни, С.Л. [Trojanski, S.L.], “О рАвномерной выпунклости и гладкости в каждом направлении в несепабелвых пространствах Банахова с безусЛовным базисом” [Uniform convexity and smoothness in every direction in nonseparable Banach spaces with unconditional bases], C.R. Acad. Bulgare Sci. 30 (1977), no. 9, 12431246.Google ScholarPubMed
[21]Vlasov, L.P., “On Čebyšev sets”, Soviet Math. Dokl. 8 (1967), 401404.Google Scholar
[22]Zarantonello, Eduardo H., “Projections on convex sets in Hilbert space and spectral theory” [Part I: Projections on convex sets, 237–341; Part II: Spectral theory, 343–424], Contributions to nonlinear functional analysis (Proc. Sympos. University of Wisconsin, Madison, 1971. Mathematics Research Center Publication No. 27. Academic Press, New York, London, 1971).Google Scholar
[23]Zhivkov, N.V., “Metric projections and antiprojections in strictly convex normed spaces”, C.R. Acad. Bulgare Sci. 31 (1978), no. 4, 369372.Google Scholar
[24]Zizler, Václav, “Banach spaces with the differentiable norms”, Comment. Math. Univ. Carolin. 9 (1968), 415440.Google Scholar