Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T03:24:27.824Z Has data issue: false hasContentIssue false

THE ${ \mathbb{F} }_{2} $-COHOMOLOGY RINGS OF $ \mathbb{S} {\text{ol} }^{3} $-MANIFOLDS

Published online by Cambridge University Press:  27 September 2013

J. A. HILLMAN*
Affiliation:
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We compute the rings ${H}^{\ast } (N; { \mathbb{F} }_{2} )$ for $N$ a closed $ \mathbb{S} {\mathrm{ol} }^{3} $-manifold, and then determine the Borsuk–Ulam indices $\text{BU} (N, \phi )$ with $\phi \not = 0$ in ${H}^{1} (N; { \mathbb{F} }_{2} )$.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Bauval, A., Gonçalves, D. L., Hayat, C. and Zvengrowski, P., ‘The Borsuk–Ulam Theorem for double coverings of Seifert manifolds’, Proc. Brazilian-Polish Topology meeting, July 2012, Proc. Inst. Math. Natl. Akad. Sci. Ukraine, to appear.Google Scholar
Carlson, J. F., ‘Cohomology of 2-groups’, www.math.uga.edu/~jfs/groups2/cohomology2.html.Google Scholar
Gonçalves, D. L., Hayat, C. and Zvengrowski, P., ‘The Borsuk–Ulam theorem for manifolds, with applications to dimensions two and three’, in Group Actions and Homogeneous Spaces, Fak. Mat. Fyziky Inform. Univ. Komenského, Bratislava (2010), 9–28.Google Scholar
Hillman, J. A., ‘The kernel of integral cup product’, J. Aust. Math. Soc. 43 (1987), 1015.CrossRefGoogle Scholar
Hillman, J. A., Four-Manifolds, Geometries and Knots, GT Monographs, 5 (Geometry and Topology Publications, 2002); latest revision: see http://www.maths.usyd.edu.au/u/jonh/.Google Scholar
Martins, S. T., Aproximações da diagonal e anéis da cohomologia dos grupos fundamentales das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos, PhD Thesis, Universidade de São Paulo, 2012.Google Scholar
J. Matoušek (with A. Björner and G. M. Ziegler). Using the Borsuk–Ulam Theorem, Lectures on Topological Methods in Combinatorics and Geometry (Universitext, Springer, Berlin, 2003).Google Scholar
Robinson, D. J. S., A Course in the Theory of Groups, Graduate Texts in Mathematics, 80 (Springer, New York, 1982).CrossRefGoogle Scholar