Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T22:12:45.211Z Has data issue: false hasContentIssue false

LOW RANK SPECIALISATIONS OF ELLIPTIC SURFACES

Published online by Cambridge University Press:  13 January 2025

MENTZELOS MELISTAS*
Affiliation:
Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

Abstract

Let $E/\mathbb {Q}(T)$ be a nonisotrivial elliptic curve of rank r. A theorem due to Silverman [‘Heights and the specialization map for families of abelian varieties’, J. reine angew. Math. 342 (1983), 197–211] implies that the rank $r_t$ of the specialisation $E_t/\mathbb {Q}$ is at least r for all but finitely many $t \in \mathbb {Q}$. Moreover, it is conjectured that $r_t \leq r+2$, except for a set of density $0$. When $E/\mathbb {Q}(T)$ has a torsion point of order $2$, under an assumption on the discriminant of a Weierstrass equation for $E/\mathbb {Q}(T)$, we produce an upper bound for $r_t$ that is valid for infinitely many t. We also present two examples of nonisotrivial elliptic curves $E/\mathbb {Q}(T)$ such that $r_t \leq r+1$ for infinitely many t.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, J., Lozano-Robledo, Á. and Peral, J. C., ‘Elliptic curves of maximal rank’, in: Proceedings of the Segundas Jornadas de Teoría de Números (eds. J. Cilleruelo, E. Gonz\'alez Jim\'enez, A. Quir\'os and X. Xarles) (Revista Matemática Iberoamericana, Madrid, 2008), 128.Google Scholar
Bouniakowsky, V., ‘Sur les diviseurs numériques invariables des fonctions rationnelles entières’, Mém. Acad. Sc. St. Pétersbourg 6 (1857), 305329.Google Scholar
Caro, J. and Pasten, H., ‘On the fibres of an elliptic surface where the rank does not jump’, Bull. Aust. Math. Soc. 108(2) (2023), 276282.CrossRefGoogle Scholar
Conrad, B., Conrad, K. and Helfgott, H., ‘Root numbers and ranks in positive characteristic’, Adv. Math. 198(2) (2005), 684731.CrossRefGoogle Scholar
Friedlander, J. and Iwaniec, H., Opera de Cribro, Colloquium Publications, 57 (American Mathematical Society, Providence, RI, 2010).CrossRefGoogle Scholar
Halberstam, H. and Richert, H.-E., Sieve Methods, London Mathematical Society Monographs, 4 (Academic Press, London, 1974).Google Scholar
Husemöller, D., Elliptic Curves, 2nd edn, Graduate Texts in Mathematics, 111 (Springer-Verlag, New York, 2004).Google Scholar
Iwaniec, H., ‘Almost-primes represented by quadratic polynomials’, Invent. Math. 47 (1978), 171188.CrossRefGoogle Scholar
Kapoor, V., ‘Almost-primes represented by quadratic polynomials’, Master of Science thesis, Simon Fraser University, 2006; arXiv:1910.2019.02885 (2019).Google Scholar
Lemke Oliver, R. J., ‘Almost-primes represented by quadratic polynomials’, Acta Arith. 151(3) (2012), 241261.CrossRefGoogle Scholar
Neumann, O.. ‘Elliptic curves with prescribed reduction. I’, Math. Nachr. 49 (1971), 106123.Google Scholar
Richert, H.-E., ‘Selberg’s sieve with weights’, Mathematika 16 (1969), 122.CrossRefGoogle Scholar
Setzer, B., ‘Elliptic curves of prime conductor’, J. Lond. Math. Soc. (2) 10 (1975), 367378.CrossRefGoogle Scholar
Silverman, J. H., ‘Heights and the specialization map for families of abelian varieties’, J. reine angew. Math. 342 (1983), 197211.Google Scholar
Silverman, J. H., ‘Divisibility of the specialization map for families of elliptic curves’, Amer. J. Math. 107 (1985), 555565.CrossRefGoogle Scholar
Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151 (Springer-Verlag, New York, 1994).CrossRefGoogle Scholar